Labview 監控平台應用於自動倉儲系統

呂文傑、黃柏睿

學生,長庚大學,電機所

1. 研究動機

面對新興國家的低人力成本及傳統電子 電路產品大量製造技術的成熟,使得台灣相 關產業逐漸外移,所留下的研發人力勢必要 另尋出路,而高合作性及高技術門檻的跨領 域產品研發,將成為留在台灣產業提高競爭 力的產品之一。為了使我們的研究對產業有 更多的貢獻,我們將與不同領域專家共同合 作來進行跨領域的研究,希望能擴大電子電 路產品的應用範疇,提升生物機電的技術層 次,增加產品的附加價值,並且對環境保護 及維護人類飲食安全做出實質的貢獻。尤其, 現實國內所推行生產力4.0需要各方面人才, 此系統包含電機、機械、資訊處理,通訊及 控制領域人才,屬於跨領域合作之系統架構, 能夠促使各產業達成智能化生產,以提高產 業競爭力。

為了提高產業競爭力,德國在 2012 年提 出「工業 4.0」作為實現 2020 年高科技戰略 的十大計畫之一。此計畫整合資料通訊、硬 體,同時結合物聯網,已建置虛實化系統 (Cyber-physical System: cps),達成智慧化生產 工廠。美國為了提振國內產業競爭力,啟動 AMP計畫,將先進計畫拉回美國本土。以先 進製造方式(如採用 3D 列印生產一部汽車), 配合大資料製造系統以及先進機器人等,此 為未來生產製造模式,達成網路面實體整合 的智慧製造。在世界各國為了提升原本的製 造產業競爭力,通過大資料技術分析,將資 通訊發展趨勢與製造產業做深度的整合,使 得製造產業不僅能夠做到自動化,同時可以 達到智慧,其所採用的技術,涵蓋所有物聯 網裝置、雲端、大資料分析、行動通訊及未 來社交媒體在內。

世界各國隨著科技進步,紛紛推動產業自動化及智慧化。國內推動產業自動化由生產

力人口發展是生產力 3.0,如圖 1 所示。其中在 1982~1991 年期間,國內產業處於生產力 1.0,在這段期間主要推展業務為工業生產自動化,可應用 PLC(可程式邏輯控制器)等裝置,由全人力作業進展至半自動 PLC機械設備生產,使得人物產值達到 145 萬元,屬於資本替及產業階段。隨著國內各項產業的發展,於 1991~2001 年期間,進入生產力 2.0階段,比階段屬於技術密集階段。其通行證側為產業自動化,將國內製造、商業、農業等產業,推向生產管線化(pipeline)。主要技術應用電腦數值控制設備,達成管線化全自動化生產,其人物產值從 145 萬元(生產力 1.0)提升至 263 萬元(生產力 2.0),共提升約 81%。

如圖 1,緊接著由生產力 2.0 進入到生產 力 3.0,在此階段為 2001~2011 年,於此 10 年期間,將國內各產業生產自動化,搭配生 產電子化,達成過內各產業生產電子化生產 流程,使企業資源有效應用,其人物產值由 每一年 263 萬元(生產力 2.0)提升至 420 萬 元,更提升 60%。在 2011 年以後,國內推 動生產力 4.0,從生產電子自動化進化至生產 智慧化,應用機器人裝置及智慧決策系統, 將國各生產產業導入智慧化生產。圖 2 為國 內推動生產力 4.0 的緣起,圖中可得知,推 動生產力 4.0 起源於生產力 1.0~3.0 時人均 產值的增加;還有就業人口從 2015 年高峰至 2020 年就業人力缺口 186 萬人;以及人口高 齡化,此三個產潛在危機,推行以技術與服 務導向的產業,克服上述三大產業危機,為 目前政府收先做的一項重要工作。在現實技 術與服務導向的產業,將結合智慧機器人、 物聯網及大數據分析技術,使國內產業能力 能夠邁向生產力 4.0。在生產力 4.0 推動上,