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Abstract: With the increasing demand for energy conservation and low-carbon development in green buildings, the
optimization design of integrated energy systems for green buildings has become a research hotspot. This paper proposes
a system optimization method based on the Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D) to
simultaneously optimize economic efficiency, environmental performance, and energy utilization efficiency. The study
first constructs an optimization model that incorporates three objectives: investment cost, carbon emissions, and the
renewable energy utilization rate. Decision variables, such as equipment capacity, operational parameters, and energy
allocation ratios, are defined. Based on this model, the MOEA/D algorithm is applied to optimize a typical building case,
with comparisons against Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-Objective Particle Swarm
Optimization (MOPSO) algorithms. The study constructs a static simulation scenario based on typical meteorological year
data, focusing on system performance under standard operating conditions, and does not currently account for uncertainties
related to extreme weather or real-time price fluctuations. Results indicate that the proposed method achieves superior
metrics compared to the comparison algorithms in terms of total system cost, carbon emissions, and energy utilization: The
MOEA/D-optimized system achieves a total cost of 1.2x10¢ yuan, representing reductions of 14.3% and 20% compared to
NSGA-II and MOPSO, respectively. Carbon emissions are reduced to 150 tons, a decrease of 17%—-25% over the
comparison methods. Renewable energy utilization reached 60%, representing a 10%—15% improvement over other
algorithms. Additionally, MOEA/D demonstrated superior convergence speed and balanced Pareto solution distribution.
The study concludes that this method effectively achieves low-carbon, high-efficiency operation of green building
integrated energy systems, providing a feasible pathway and technical support for building energy conservation, emission
reduction, and sustainable development.

Keywords: Multi-objective optimization algorithm, green building integrated energy system, low-carbon benefit analysis,
decomposable multi-objective evolutionary algorithm.
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1. Introduction

The continuous growth in global energy demand and increasingly severe environmental challenges have driven the building
sector toward green, low-carbon development (Chadly et al., 2023). Green Building Comprehensive Energy Systems (GB-
CES) integrate multiple energy forms to achieve efficient energy utilization and emission reduction, emerging as a key
development in the building field (Fan et al., 2024). The design of GB-CES must not only ensure the reliability and economic
viability of energy supply but also prioritize environmental sustainability (Gabbar and Ramadan, 2025). Designing these
systems using multi-objective optimization algorithms enables comprehensive optimization of economic, environmental,
and energy-efficiency metrics, providing robust support for green building development (Leu and Shi, 2024). Consequently,
researching design methodologies for integrated energy systems in green buildings that incorporate low-carbon benefit
analysis is of profound significance and provides essential support for advancing green buildings (Choi et al., 2024).

The design methodology for green building integrated energy systems primarily encompasses system architecture design,
construction of optimization models, implementation of algorithms, and low-carbon benefit analysis (Gu et al., 2023). In
recent years, the design and optimization of integrated energy systems for green buildings have become a hot research topic
both domestically and internationally. Overseas scholars have conducted extensive research on system integration and the
application of optimization algorithms (Sirin et al., 2023). Wang (2024) proposed an optimization method based on genetic
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algorithms for the integrated utilization of solar and wind energy. Zhang et al. (2025) investigated the coordinated
optimization of heat pumps and energy storage devices to enhance the system’s energy utilization efficiency. Domestic
scholars, however, have focused more on the practical application and economic analysis of the systems. Lv (2025)
conducted an economic assessment of an energy system in a green building; Akpan (2024) investigated the integrated
optimization of solar photovoltaic and energy storage systems. Additionally, recent research has explored applying machine
learning models to predict the electricity generation capacity of rooftop solar energy systems on buildings (Hoang Son and
Duy, 2023).

However, existing research predominantly concentrates on single-objective optimization, lacking in-depth exploration
of multi-objective optimization (Huener and Telli, 2023). Furthermore, analyses of low-carbon benefits remain incomplete
due to the lack of long-term environmental impact assessments (Mersal, 2023). Regarding optimization algorithms, while
genetic algorithms and particle swarm optimization are widely applied, these methods exhibit limitations when handling
complex multi-objective optimization problems (Shum and Zhong, 2023; Brzozka, 2024).

Despite significant progress in research on integrated energy systems for green buildings, several shortcomings and
challenges remain. First, optimization involves multiple conflicting objectives such as economic viability, environmental
sustainability, and energy efficiency, making simultaneous optimization challenging (Pham and Tran, 2023). Second,
existing studies on low-carbon benefits predominantly focus on carbon emission calculations, lacking comprehensive
assessments of the system’s long-term environmental benefits (Fu et al., 2025). Third, current multi-objective optimization
algorithms exhibit slow convergence and insufficient solution diversity when applied to complex systems (Li, 2024).

To address these limitations, this paper proposes a design methodology for green building integrated energy systems
based on the Multi-Objective Evolutionary Algorithm (MOEA/D) (Sui et al., 2025). To address the aforementioned
challenges, this study investigates the following core questions: (1) How can a high-dimensional multi-objective
optimization model be constructed to simultaneously balance economic costs, environmental impacts, and energy efficiency?
(2) Does the MOEA/D algorithm possess significant advantages over traditional multi-objective algorithms when handling
the complex nonlinear constraints of green building integrated energy systems? Based on these questions, this paper proposes
a systematic optimization framework to resolve these conflicts. Key contributions include establishing a multi-objective
optimization model for integrated energy systems in green buildings. This model comprehensively considers economic
viability, environmental sustainability, and energy utilization efficiency. We also modified the MOEA/D algorithm to
enhance its convergence speed and solution diversity, tailored to the characteristics of green building integrated energy
systems. Finally, we validated the proposed method through practical case studies and conducted comparative analyses with
other optimization approaches to demonstrate its advantages.

To systematically present the research content, this paper is structured as follows. Section 2 details the design methodology
for green building integrated energy systems, including system architecture, optimization models, and low-carbon benefit
analysis. Section 3 proposes the principles and implementation steps of the MOEA/D-based optimization algorithm. Section
4 conducts experimental validation using typical case studies and compares the results with algorithms such as NSGA-II and
MOPSO. Finally, section 5 summarizes the research conclusions, identifies limitations, and proposes future research
directions. Through this structure, the paper aims to comprehensively reveal the optimization pathways and the low-carbon
value of integrated energy systems in green buildings, focusing on economic efficiency, environmental sustainability, and
energy efficiency.

2. Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
2.1. Algorithm Principle

The Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Xue et al., 2025) is an efficient multi-
objective optimization algorithm that has been widely applied in solving complex multi-objective optimization problems in
recent years, as shown in Fig. 1. MOEA/D decomposes multi-objective optimization problems into multiple single-objective
subproblems and utilizes neighborhood information for optimization. This approach effectively enhances the algorithm's
convergence speed and solution diversity.

boundary layer inside layer S

Fig. 1. MOEA/D algorithm

The core idea of MOEA/D is to decompose a multi-objective optimization problem into multiple single-objective
subproblems and approximate the global optimum by optimizing these subproblems. The objective function for each
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subproblem is formed by combining multiple objective functions through weighting (Meng et al., 2024). By optimizing these
weighted objective functions, the algorithm can simultaneously handle multiple objectives and generate a set of Pareto
optimal solutions in the solution space.

In MOEA/D, the objective function for each subproblem can be expressed as a weighted sum, as shown in Eq. (1):

FACED I AC) (M

where: f, (x) denotes the objective function for the i-th subproblem; M represents the number of objective functions

in the original multi-objective optimization problem; /1,-,- indicates the weight coefficient, used to balance the contributions
of different objective functions; g; (x ) is the j-th objective function in the original multi-objective optimization problem.

The weight coefficient /1,-1« is typically distributed uniformly based on the subproblem number and the total number of
objective functions. For a two-objective optimization problem, the weight coefficients can be generated as Eq. (2):
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where N denotes the total number of subproblems.
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2.2. Algorithm Steps
Based on the principles of the MOEA/D algorithm, its algorithmic flow is illustrated in Fig. 2, with specific steps as follows:

Initialize
population P

Assign a weight vector to each
subproblem

Each subproblem undergoes crossover
mutation within the neighborhood individuals

Update the neighborhood
solution

Termination?

Yes !

Fig. 2. Algorithm flowchart
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Step 1: Initialize the population. Randomly generate the initial population P with size N; initialize the weight coefficient
A for each subproblem.

Step 2: Construct the neighborhood. For each subproblem, identify the T subproblems closest to it based on their weight
coefficients as its neighborhood.

Step 3: Optimize subproblems. For each subproblem, select several individuals from its neighborhood to perform
crossover and mutation operations, generating new solutions; compute the objective function values of new solutions and
update solutions in the neighborhood.

Step 4: Update neighborhood solutions. If a new solution outperforms an existing solution in the neighborhood, replace
the existing solution with the new one.

Step 5: Check termination conditions. If termination criteria (e.g., maximum iterations reached or convergence) are
satisfied, halt the algorithm. Otherwise, return to Step 3.

Step 6: Output results. Output the optimal solutions for all subproblems, forming the Pareto front.
2.3. Application Analysis

Based on the principles and optimization process of the MOEA/D algorithm, it offers significant advantages, including high
efficiency, diversity, adaptability, and scalability (Huang et al., 2024).

(1) Efficiency. By decomposing multi-objective optimization problems into multiple single-objective subproblems,
computational complexity is reduced. Utilizing neighborhood information for optimization enables rapid convergence to
global optimal solutions.
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(2) Diversity. By optimizing multiple subproblems, a uniformly distributed set of Pareto-optimal solutions can be
generated while maintaining solution diversity.

(3) Adaptability. Applicable to diverse multi-objective optimization problems, including both linear and nonlinear
objective functions, adaptable to varying problem scales and complexities by adjusting weight coefficients and neighborhood
sizes.

(4) Scalability. Features a simple algorithmic structure that facilitates implementation and extension, which can be
combined with other optimization algorithms (e.g., genetic algorithms, particle swarm optimization) to further enhance
optimization performance.

3. Integrated Energy System Design for Green Buildings
3.1. System Architecture Design

The design objective of integrated energy systems for green buildings is to achieve efficient energy utilization and low-
carbon operation. System architecture design must consider multiple stages, including energy supply, conversion, storage,
and distribution (as shown in Fig. 3) to meet diverse building energy demands such as cooling, heating, and electricity
(Alassaf, 2024).

= jag T SRR * xR Goals —— T —m === =—=~= I
o) ) I O Efficient energy

™ 0 e & e tilizati |
o)) | utilization

() % l O Low-carbon operation |
>0 | Y ' e e e e e e om— -
o2 g V) BSOKER

o

LE c @ i ~ . 0 I
- 8 | e o s o Energy supply

IONG) ! 2 1 O Conversion |
g 5 I & 1 & wmos | O Storage |
Q- - S){stem 1 O Distribution 1
E architeCturd m= == == == == ——— -

design

Fig. 3. System component diagram
3.1.1. Energy supply system

The energy supply system serves as the core component of the green building’s integrated energy system. It primarily
comprises energy equipment such as solar photovoltaic systems, wind power generation systems, natural gas power
generation systems, and biomass energy systems, as detailed in Fig. 4.
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Fig. 4. Energy supply system

As shown in Fig. 4, the solar photovoltaic system converts solar energy into electricity via solar panels to power the
building. The wind power generation system uses wind turbines to convert wind energy into electricity, making it suitable
for regions with abundant wind resources. The natural gas power generation system converts natural gas into electricity
through gas turbines or internal combustion engines while recovering waste heat for heating or cooling. Biomass energy
systems utilize biomass (such as straw, wood chips, etc.) to generate thermal or electrical energy through combustion or
gasification.

3.1.2. Energy conversion equipment
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Energy conversion equipment transforms one form of energy into another to meet diverse building requirements. This
includes heat pumps, fuel cells, absorption chillers, and similar devices. Heat pumps use electrical energy to absorb heat
from low-temperature sources (e.g., air, groundwater) for building heating or cooling; fuel cells directly convert the chemical
energy of fuels (e.g., hydrogen, natural gas) into electrical energy through chemical reactions while producing thermal energy;
absorption chillers utilize thermal energy to drive an absorption refrigeration cycle, generating cooling capacity for building
air conditioning systems.

3.1.3. Energy storage systems

Energy storage systems store surplus energy to balance supply and demand. 1) Battery storage systems store electrical energy
in batteries for peak shaving and emergency power supply. 2) Thermal storage systems utilize phase change materials or
water as media to store thermal energy for heating or cooling. 3) Compressed air energy storage systems store energy by
compressing air, releasing it for power generation when needed. Specific configurations of energy storage systems are
illustrated in Fig. 5.
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Fig. 5. Energy storage system configuration Fig. 6. Diagram of low-carbon benefit analysis

3.1.4. Energy distribution network

The energy distribution network is responsible for delivering energy from the supply end to various energy consumption
points within the building. Based on energy form, the energy distribution network is categorized into electrical, thermal, and
cooling distribution networks.

3.2. Low-Carbon Benefit Analysis

Low-carbon benefit analysis is a critical component in evaluating the performance of integrated energy systems in green
buildings (Haddad and Javani, 2024). By calculating the system’s carbon emissions, energy-saving benefits, and economic
benefits, a comprehensive assessment of its low-carbon benefits can be achieved, as illustrated in Fig. 6.

1. Carbon emissions serve as a key indicator for assessing a system’s environmental friendliness. Carbon emission
calculations require consideration of the carbon emission factors for various energy sources within the system, calculated as
follows:

C.=Y ExF ®

Where: C, represents total carbon emissions. E, represents the consumption of the i-th energy source. F; represents

the carbon emission factor of the i-th energy source. For power systems, the carbon emission factor can be calculated based
on the power grid’s energy mix. For natural gas systems, the carbon emission factor can be calculated based on the
combustion efficiency of natural gas.

2. Energy-saving benefit assessment is primarily achieved by comparing energy consumption data before and after
optimization. The energy-saving benefit can be calculated using the following equation:

C.o.—C
Rb — before after % 100% (4)

before
Here, R, represents energy-saving benefits. Cbeﬁ,re denotes pre-optimization energy consumption. Cqﬂe, indicates

post-optimization energy consumption. Higher energy-saving benefits indicate more significant improvements in the
system’s energy utilization efficiency.

3. Economic benefit analysis primarily considers the system’s investment costs and operational maintenance costs (Wei,
2024). Investment costs include equipment procurement, installation fees, and related expenses. Operational maintenance
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costs include energy expenses, equipment maintenance fees, and related costs. Economic benefits can be calculated using

the following equation:

1
E, ===

x100% (%)

m

Here, E, represents the payback period, primarily used to calculate economic benefits; /. denotes total investment cost;
S, indicates annual savings. A shorter payback period indicates better economic benefits for the system.

m

4. Environmental benefit analysis primarily evaluates the system’s contribution to reducing greenhouse gas emissions
and improving environmental quality. By comparing traditional energy systems with optimized, integrated energy systems
in green buildings, the environmental benefits of the latter can be assessed.

3.3. Optimization Model Construction

Optimization modeling is key to achieving integrated energy system design for green buildings (Afroozeh, 2024). By
constructing a multi-objective optimization model, the system’s economic viability, environmental performance, and energy
utilization efficiency can be considered simultaneously.

3.3.1. Objective functions
The objective functions of the optimization model include economic, environmental, and energy-efficiency targets.

The economic objective minimizes the total investment cost and operation and maintenance cost of the system (Mohamed
Ali and Akka, 2024), calculated as follows:
Cinve.vtment + Copemtion (6)

where C, .. represents the total investment cost. Copemt,-o,, represents the operation and maintenance cost. The

Minimize C

total —

environmental objective minimizes the carbon emissions of the system, calculated as follows:

Minimize C,=)" E xF (7)

The energy utilization efficiency objective maximizes the renewable energy utilization rate of the system (Ben
Mohammed, 2023), calculated explicitly as follows:

s _ “re—e
Maximize nrenewable - (8)

Where E,,_, denotes renewable energy consumption, and £, denotes total energy consumption.

3.3.2. Constraints

The optimization model’s constraints include energy supply-demand balance constraints, equipment operation constraints,
and environmental constraints (Yao et al., 2024). The energy generated by the system must satisfy the building’s energy
demand.
Ewpply = Edemand (9)
Equipment operation constraint. Equipment operating parameters must remain within permissible ranges.
an € [Pmin s Pmax ] (10)

Environmental constraints. The system’s carbon emissions must comply with environmental protection requirements.

Ce S Ce,limit (1 1)
4. Design Method for Green Building Integrated Energy Systems Based on the MOEA/D Algorithm

In designing green building integrated energy systems, multi-objective optimization algorithms effectively balance system
economics, environmental performance, and energy utilization efficiency. This section introduces a design methodology
based on multi-objective optimization algorithms, covering the definition of decision variables, the construction of objective
functions, and specific optimization steps.

4.1. Decision Variables

In the design of green building integrated energy systems, decision variables are parameters that require adjustment during
optimization and directly impact system performance and benefits. Key decision variables include equipment capacity,
operational parameters, and energy allocation ratios, structured into three main categories.

Specifically, equipment capacity includes solar panel area, wind turbine power, heat pump power, energy storage system
capacity, and natural gas power generation system capacity. Equipment operating parameters include operating time, energy
storage system charge/discharge power, and energy conversion efficiency. Energy allocation ratios include the distribution
of different energy sources for heating, cooling, and power supply, along with the priority given to renewable energy.
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4.2. Objective Functions

Objective functions represent the metrics to be optimized during the process. Designing integrated energy systems for green
buildings typically necessitates simultaneous consideration of economic viability, environmental sustainability, and energy
utilization efficiency. Consequently, the objective functions encompass economic, environmental, and energy utilization
efficiency targets.

4.3. Methodological Steps

The flowchart illustrating the design methodology for integrated energy systems in green buildings based on multi-objective
optimization algorithms is shown in Fig. 7. The specific steps are as follows:

Step 1: Initialize parameters. Determine system parameters, including building energy demand, equipment performance
parameters, energy prices, and other relevant factors. Randomly generate an initial population of size N. Set optimization
algorithm parameters such as maximum iteration count and neighborhood size.

Step 2: Construct the multi-objective optimization model. Define decision variables, including equipment capacity,
operational parameters, and energy allocation ratios, based on system design requirements. Establish a multi-objective
optimization model considering economic efficiency, environmental performance, and energy utilization efficiency. Set
constraints including energy supply-demand balance, equipment operation, and environmental limitations.

Step 3: Select the optimization algorithm. Choose the MOEA/D algorithm as the optimization tool based on the
characteristics of green building integrated energy systems.

Step 4: Execute the optimization algorithm. Construct a neighborhood for each subproblem based on weight coefficients.
For each subproblem, select several individuals from its neighborhood to perform crossover and mutation operations,
generating new solutions. Replace the current solution with the new solution if it outperforms existing solutions within the
neighborhood. Terminate the algorithm if termination conditions are met. Otherwise, return to the subproblem optimization
step.

Step 5: Analyze optimization results. Output optimal solutions for all subproblems to form the Pareto front.
Comprehensively evaluate the system’s low-carbon benefits by calculating carbon emissions, energy savings, and economic
benefits. Compare optimization results with those from traditional design methods to validate the optimization approach’s
effectiveness.

5. Experimental Validation
5.1. Experimental Setup

Validate the performance of the MOEA/D-based green building integrated energy system design method in terms of
economic efficiency, environmental friendliness, energy utilization efficiency, and compare it with other optimization
algorithms. A typical green building project is selected as the experimental subject, with its main parameter settings
shown in Table 1.

This paper employs the MOEA/D algorithm to address the optimization design of integrated energy systems for green
buildings. The specific parameter settings for the algorithm are detailed in Table 2.

To demonstrate the superiority of the green building integrated energy system optimization design method based on the
MOEA/D algorithm, this paper employs NSGA-II (Non-Dominated Sorting Genetic Algorithm) and MOPSO (Multi-
Objective Particle Swarm Optimization) as comparative algorithms.
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Table 1. Experimental subject parameter settings

No. Project Parameter Name Value
1 Building Scale Area 10000m?
Electricity Demand 500kW
2 Energy Demand Heating Demand 300kW
Cooling Demand 200kW
) Electricity Price 0.15CNY/kWh
3 Energy Price )
Natural Gas Price 3.5CNY/m?
Solar PV Efficiency 18%
) Wind Turbine Power 100kW
4 Equipment Parameters
Heat Pump COP 35
Energy Storage Capacity 100kWh

Table 2. MOEA/D optimization algorithm parameter settings

No. Parameter Name Value

1 Population Size 100

2 Max Iterations 100

3 Neighborhood Size 20

4 Crossover Probability 0.9

5 Mutation Probability 0.1
5.2. Result Analysis

This section provides a detailed analysis of the performance of the green building integrated energy system
design method based on the multi-objective optimization algorithm (MOEA/D). By comparing with NSGA-II
and MOPSO, the effectiveness and superiority of the proposed method are evaluated across multiple dimensions,
including total system cost, carbon emissions, renewable energy utilization rate, and algorithm convergence
characteristics. Specific results are presented in Figs. 8 to 12 and Table 3.

Fig. 8 presents the comparison results of total costs for integrated energy systems in green buildings under different
optimization algorithms. The figure indicates that the MOEA/D algorithm delivers the best performance in improving system
economics, with its optimized total cost significantly lower than those achieved by NSGA-II and MOPSO. Specifically, the
total system cost obtained by MOEA/D is 1.2x106 yuan, while NSGA-II and MOPSO vyield values of 1.4x10%6 yuan and
1.5x10"6 yuan, respectively. This demonstrates that MOEA/D can effectively reduce investment and operational
maintenance expenditures while ensuring regular system operation. Its advantage stems from the algorithm’s rapid
convergence speed and balanced solution set generation capability when handling multi-objective optimization problems.
This enables better coordination among energy supply, storage, and distribution segments, thereby minimizing economic
objectives.

Further analysis reveals that during cost optimization, MOEA/D not only reduces total investment but also achieves
synergistic effects in energy operational efficiency. Compared with alternative algorithms, the results demonstrate that the
system can achieve a higher proportion of renewable energy use at lower cost, thereby indirectly reducing reliance on high-
cost fossil fuels. In contrast, NSGA-II and MOPSO, due to slower convergence rates and insufficient solution diversity, are
prone to getting stuck in local optima, leading to suboptimal cost control in the final optimization results.

Fig. 9 presents the comparative results of three optimization algorithms regarding carbon emissions in green building
integrated energy systems. The figure demonstrates that the MOEA/D-based optimization yields the optimal outcome, with
carbon emissions as low as 150 tons, which is significantly lower than the 180 tons from NSGA-II and 200 tons from
MOPSO. This demonstrates MOEA/D’s outstanding performance in eco-friendly optimization, enabling more effective
reduction of fossil fuel consumption and associated emissions during system operation. Its superiority stems from the precise
scheduling of energy allocation and equipment operating parameters, maximizing renewable energy utilization.
Consequently, it significantly reduces total carbon emissions while ensuring building energy demands are satisfied.

During optimization, the MOEA/D algorithm not only directly reduces carbon emissions but also achieves a superior
balance in overall system energy efficiency. While NSGA-II and MOPSO can reduce emissions to some extent, their slow
convergence and poor distribution of solutions prevent them from finding optimal solutions, resulting in persistently high
carbon emissions. The results in Fig. 9 demonstrate that MOEA/D effectively balances economic viability and environmental
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sustainability through its multi-objective optimization strategy. This approach not only reduces system costs but also
significantly enhances low-carbon benefits.

Fig. 10 presents the comparative results of three optimization algorithms regarding renewable energy utilization rates in
green building integrated energy systems. As shown, the MOEA/D optimization yields the optimal result, achieving a
renewable energy utilization rate of 0.60, which is significantly higher than NSGA-II’s 0.50 and MOPSO’s 0.45. This
indicates that MOEA/D not only excels at reducing system costs and carbon emissions but also offers significant advantages
in improving energy utilization efficiency. This stems from MOEA/D’s ability to allocate cleaner energy sources like solar
and wind power more rationally while optimizing the operation of energy storage systems. Consequently, it reduces reliance
on fossil fuels, thereby achieving a greener, more efficient energy system.
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MOEA/D’s utilization advantage reflects its balanced multi-objective optimization capability. Compared to other
algorithms, it achieves superior coordination between economic and environmental objectives, maximizing renewable
energy usage without significantly increasing system costs. In contrast, NSGA-II and MOPSO often converge to suboptimal
local solutions due to insufficient convergence speed and solution diversity, resulting in limited improvements in renewable
energy utilization.

Fig. 11 displays the convergence curves of the three algorithms. Under uniform parameter settings (population = 100,
maximum iterations = 100), the MOEA/D curve exhibits a steeper initial slope, rapidly descending from the high-cost region
and entering the stable low-value zone earlier, with smaller iteration fluctuations. NSGA-II and MOPSO exhibit relatively
slower descent rates, with noticeable plateaus and oscillatory behavior in the middle to late stages, and a tendency to linger
in suboptimal neighborhoods. The curve patterns indicate that MOEA/D achieves a superior balance between “global
exploration and local exploitation,” ensuring search efficiency while enhancing convergence stability, thereby laying the
groundwork for obtaining better compromise solutions.

MOEA/D decomposes multi-objective problems into weighted subproblems, using weight vectors to cover diverse
directions. It enhances information utilization through neighborhood-based collaborative updates and solution replacement.
This “decomposition + neighborhood” strategy simultaneously advances convergence toward the Pareto front while
suppressing the propagation of poor solutions and reducing search randomness. With the parameters specified in this paper
(neighborhood T=20, crossover probability 0.9, mutation probability 0.1), MOEA/D significantly accelerates convergence
toward the low-cost/low-emission region while maintaining solution diversity, resulting in smoother curves and faster
convergence.
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MOEA/D’s faster stabilization means acquiring higher-quality candidate solutions within the same iteration budget,
reducing computational overhead and enhancing solution selection certainty. In contrast, NSGA-II and MOPSO require
more iterations to escape plateaus, with oscillations increasing the risk of “false convergence” and suboptimal solution
selection. Note that MOEA/D’s advantages remain influenced by hyperparameters such as weight design and neighborhood
size. In practice, combining early stopping criteria, restart mechanisms, and adaptive weight vectors can further enhance
convergence reliability and adaptability to diverse decision preferences.
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Fig. 12 illustrates the distribution of Pareto frontiers generated by three optimization algorithms in the multi-objective
space, enabling a visual comparison of solution set quality and coverage. The results show that the solution set generated by
MOEA/D exhibits a more uniform distribution and is closer overall to the ideal point region (low cost, low carbon emissions).
This indicates that, during multi-objective optimization, MOEA/D not only identifies more trade-off solutions but also
ensures balanced development across economic efficiency and environmental sustainability. In contrast, the solution set
generated by NSGA-II exhibits local clustering, making it difficult to comprehensively cover the Pareto frontier. Meanwhile,
the frontier distribution generated by MOPSO is relatively sparse, with discontinuities observed in certain regions, suggesting
its limitations in maintaining solution diversity.

Further analysis reveals that MOEA/D exhibits more pronounced inflection points in its solution set, enabling substantial
reductions in carbon emissions at minimal cost, and is a highly valuable reference for engineering decisions. Its balanced
distribution enables decision-makers to identify suitable solutions across diverse scenarios swiftly. In contrast, NSGA-II’s
convergence speed and solution distribution constraints lead to solutions clustering predominantly in the middle range, with
insufficient coverage of extreme regions. MOPSO exhibits solution biases in certain cases, weakening the reliability of the
results. These differences demonstrate MOEA/D’s superior global stability and robustness in generating high-quality
solution sets.

Table 3. Algorithm performance comparison

No. Algorithm System Total Cost Carbon Emissions Renewable Energy Utilization Rate
1 MOEA/D 1.2e+06 150 0.6
2 NSGA-II 1.4e+06 180 0.5
3 MOPSO 1.5e+06 200 0.45

Table 3 compares the optimization results of the MOEA/D, NSGA-II, and MOPSO algorithms based on three key metrics:
total system cost, carbon emissions, and renewable energy utilization rate. The results demonstrate that MOEA/D achieves
the best performance across all metrics. Its total system cost is 1.2x10"6 yuan, representing reductions of approximately
14.3% and 20% compared to NSGA-II (1.4x10"6 yuan) and MOPSO (1.5x1076 yuan), respectively, significantly enhancing
economic efficiency. Carbon emissions were controlled at 150 tons, markedly lower than NSGA-II’s 180 tons and MOPSO’s
200 tons, representing reductions ranging from 16.7% to 25% and demonstrating superior environmental benefits. Regarding
renewable energy utilization rate, MOEA/D achieved 0.60, representing a 10%—15% improvement over NSGA-II's 0.50 and
MOPSQ’s 0.45. This indicates that MOEA/D not only enables low-cost operation but also effectively promotes energy
structure optimization and carbon reduction. Its comprehensive performance surpasses that of the comparison algorithms,
providing robust quantitative support for low-carbon and efficient design of green building systems. It should be noted that
the aforementioned results are based on specific building parameters and fixed energy pricing. Although MOEA/D
demonstrates superior convergence and solution set distribution in the current deterministic scenario, the stochastic
fluctuations of load demand and renewable energy output in practical engineering may affect the boundaries of the optimal
solution. Therefore, this study validates the method’s effectiveness under standard design conditions, while robustness
analysis targeting dynamic, uncertain environments will be the focus of future research.
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6. Conclusion

This paper proposes a system design methodology based on MOEA/D to optimize integrated energy systems for green
buildings and analyze their low-carbon benefits. The research first constructs a multi-objective optimization model that
comprehensively considers economic efficiency, environmental performance, and energy utilization efficiency, and defines
key decision variables, including equipment capacity, operational parameters, and energy allocation ratios. Subsequently,
the proposed method was experimentally validated using a typical case study and compared with NSGA-II and MOPSO
algorithms. Results demonstrate that MOEA/D outperforms the comparison algorithms across three metrics, including total
system cost, carbon emissions, and renewable energy utilization rate. Specifically, total cost is reduced by 14.3%—-20%,
carbon emissions decrease by 16.7% to 25%, and renewable energy utilization rate increases by 10% to 15%. Additionally,
MOEA/D demonstrated favorable performance in convergence speed, balanced solution set distribution, and Pareto frontier
approximation. The findings verify the method’s effectiveness and application value in promoting low-carbon, high-
efficiency operation of green buildings.

Despite achieving promising results, this study has several limitations. First, the experimental data relied primarily on a
single building case, lacking validation across diverse scenarios, thereby limiting the generalizability of the findings. Second,
the short research cycle focused solely on static operating conditions, failing to fully evaluate the system’s stability and
robustness under long-term operation and dynamic environments. Furthermore, the objective function of the optimization
model is relatively narrowly defined, not yet comprehensively incorporating social indicators such as user comfort and policy
constraints, which limits the method’s comprehensive applicability in practical engineering.

Future research will focus on the following areas. First, expanding the diversity and scale of case studies to validate the
method’s universality and adaptability across different climate zones, building types, and energy pricing environments.
Second, incorporating dynamic optimization and uncertainty analysis to fully account for seasonal variations in building
energy consumption, energy price fluctuations, and policy constraints. Third, refine the optimization model by adding
multidimensional objectives, such as comfort evaluation, system resilience, and policy alignment, to enhance its decision-
making value. Concurrently, we will explore integrating deep learning and intelligent control methods with MOEA/D to
establish a more intelligent and adaptive optimization framework for green building integrated energy systems.
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