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Abstract: Traditional multi-objective optimization methods suffer from limitations such as sluggish convergence and high 
scenario sensitivity when it comes to multi-objective architectural design decision optimization for sustainable buildings. 
This study constructs a multi-objective architectural design decision optimization model that simultaneously considers 
comfort level and building energy consumption. The model is solved using a modified backbone multi-objective particle 
swarm optimization algorithm that optimizes the search strategy and introduces an adaptive perturbation mechanism. 
Results show the improved algorithm achieved higher hypervolume values than the rest of the mainstream algorithms in 
both building scenarios. Performance remained stable with minimal fluctuation between scenarios. In the single-room 
office scenario, the average hypervolume value of the improved algorithm was as high as 29,963. This substantially 
exceeded the non-dominated sorting genetic algorithm II (NSGA-II), which achieved 19,246. For the three residential 
scenarios, the improved algorithm reached an average hypervolume of 42,639, compared to 14,628 for standard multi-
objective particle swarm optimization. Across scenarios, the improved algorithm’s average run times (1.38h and 3.38h, 
respectively) were lower than all other algorithms. In addition, the algorithm’s Pareto frontier solutions were concentrated 
in the low-energy, high-comfort region. In conclusion, the improved algorithm effectively achieves dual-objective decision 
optimization, balancing user comfort with building energy efficiency. Novelty lies in integrating a backbone guidance 
mechanism with an adaptive perturbation strategy. This addresses parameter redundancy and premature convergence in 
traditional multi-objective particle swarm optimization. The approach practically enables rapid generation of energy-
efficient designs while maintaining high comfort levels. This provides architects with quantitative support for sustainable 
design across various building types, including offices and residences.  
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_________________________________________________________________________________________

1. Introduction 

The building sector represents a significant source of Energy Consumption (EC) and carbon emissions. Amplified by global 
climate change and energy crisis, sustainable development in this sector has become crucial for achieving the “double 
carbon” goal (Zhong et al., 2024). Building operating EC constitutes over 30% of global EC, while associated carbon 
emissions account for over 28%, according to the International Energy Agency figures. Moreover, the acceleration of 
urbanization continues to drive these figures upward. In the context of rising global building EC and tightening carbon 
constraints, sustainable building design is urgently needed to reduce EC and environmental impacts while taking into 
account multiple objectives such as Comfort Level (CL) and construction costs (Ramzanpoor et al., 2022; Mangalampalli 
et al., 2022). Among traditional decision optimization methods, mathematical planning requires preset objective weights, 
limiting its effectiveness in dynamic and complex scenarios. The hierarchical analysis method relies on subjective 
assignment, introducing potential decision bias. Although Genetic Algorithms (GA) and Particle Swarm Optimization 
(PSO) enable global search, their performance is sensitive to the values of Inertia Weights (IWs), learning factors and other 
control parameters. Their manual tuning cost is extremely high. Meanwhile, the necessity of continually using expensive 
EC simulation software leads to time-consuming computations and makes it challenging to satisfy engineering design 
requirements (Morales-Hernández et al., 2023; Hu et al., 2022). Therefore, more effective design decision optimization 
solutions remain necessary to support the construction industry's transition toward low-carbon, intelligent, and green 
development strategies. 

Multi-Objective Optimization (MOO) issues have attracted significant interest in the domains of computational 
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resource scheduling and building design. Addressing the dual optimization of building life cycle costs and carbon emissions, 
Xue et al. (2022) proposed a simulation-based MOO method. The study modeled a passive house in a severely cold climate, 
established response relationships using artificial neural networks, and identified optimal solutions using the non-
dominated sorting genetic algorithm II (NSGA-II). To address workflow scheduling concerns in multi-cloud computing, 
Mohammadzadeh and Masdari (2023) integrated seagull and grasshopper algorithms, incorporating chaotic mapping to 
enhance convergence. Results demonstrate superior performance in coverage and other metrics compared to advanced 
existing techniques. Xue et al. (2023) found that most of the deep neural network methods focus solely on accuracy and 
ignore efficiency. Therefore, this study proposed a multi-objective (MO) evolutionary algorithm based on a probabilistic 
stack. Their approach employed an agent model for network construction and introduced a unique cross-mutation 
methodology, encoding network topology in terms of nearby tables. Experimental results showed 73.6% accuracy on 
ImageNet. A MO marine predator algorithm based on elite non-dominated sorting and crowded distance mechanism was 
suggested by Jangir et al. (2023) for MOO issues in order to model the behavior of predator-prey interactions. The algorithm 
outperformed multiple mainstream algorithms across 32 test problems with diverse features. 

Multi-objective particle swarm optimization (MOPSO) is applied across numerous fields of society. Zhang et al. (2025) 
proposed an MOPSO algorithm incorporating Q-learning to address the high complexity and EC in distributed flow shop 
scheduling. Their method introduced a particle grouping strategy to accelerate convergence toward the multi-region Pareto 
frontier. Results demonstrated superior performance over conventional evolutionary algorithms in both solution quality 
and convergence speed (CS). To address the limited search performance brought on by the fixation of the global optimal 
selection in MOPSO, Han et al. (2022) proposed an adaptive candidate estimation-assisted MOPSO method. This method 
enhanced the algorithm's ability to balance convergence and diversity by introducing two evaluation distances. Wang et al. 
(2023) developed an inflection point-based collaborative MOPSO algorithm for handling mixed variables and multiple 
constraints in heterogeneous UAV collaborative multitasking. Their algorithm introduced an inflection point learning 
mechanism to optimize the external profile update. The results revealed that the algorithm could efficiently obtain high-
quality allocation schemes that satisfy complex constraints in multiple instances. Agajie et al. (2023) suggested using the 
MOPSO approach to optimize the capacity and location of distributed power sources. revealed that the MOPSO could 
effectively reduce the system loss, in which the power loss is reduced by 81.77%. The System performance further 
improved when the penetration rate of distributed power supply was increased from 10% to 40% under the premise of 
satisfying the IEEE standard. 

In summary, existing research focuses on applying MOO algorithms in the fields of architectural design, scheduling 
optimization, and neural network construction, with numerous advanced methods proposed. Although MOPSO has 
achieved significant results in industrial manufacturing, cloud computing scheduling, and UAV task allocation, its practical 
application in MO decision optimization for building design remains relatively limited. This limitation arises because 
architectural design problems typically involve various high-dimensional decisions that lead to dimensional disasters. 
Additionally, each iteration requires high-cost energy simulation software, placing extremely high demands on the CS and 
computational efficiency of the algorithm. Traditional MOPSO algorithms struggle to meet practical engineering design 
cycle requirements. This research aims to enhance MOPSO by addressing the premature convergence caused by redundant 
control parameters and high-dimensional decision space interference in architectural design optimization. To this end, the 
study constructs a sustainable building design decision model with CL and building EC as dual optimization objectives. 
Meanwhile, an improved backbone BMOPSO algorithm is introduced to solve the model. The innovation of the study is 
to introduce the backbone guidance mechanism and adaptive perturbation mechanism into MOPSO to serve the MOO of 
architectural design. This approach effectively prevents premature convergence in traditional MOPSO caused by control 
parameter redundancy. Furthermore, integrating comfort and energy consumption objectives enhances the practical 
applicability of design decisions. 

2. Methods and Materials 

The study establishes the construction of an MOO system in MO architectural design decision optimization for sustainable 
buildings. Using CL and EC as key indicators, this study constructs an MOO model containing 12 decision variables 
constructed by translating complex EC factors into quantifiable parameters via EnergyPlus software. The issue of classic 
MOPSO's propensity to settle into local optimal states is addressed with the introduction of BMOPSO. Moreover, 
BMOPSO is optimized by introducing an adaptive perturbation mechanism to form an improved BMOPSO algorithm. 

2.1. Multi-Objective Architectural Design Decision Optimization Model 

The primary focus in sustainable building design decision optimization is constructing an efficient MOO system. First, a 
building model for MOO must be developed. The model construction primarily considers two indicators, CL and EC. 
Increased building EC often correlates with improved CL. The influence mechanism of sustainable building EC is 
extremely complex, as shown in Fig. 1. On the one hand, the factors affecting building EC are not only related to window 
parameters, room orientation, envelope properties, indoor environmental parameters, and air-conditioning system settings. 
These factors exhibit significant coupling effects between the factors. For instance, the thermal insulation performance of 
the exterior wall and the solar heat gain synergistically affect the cooling and heating EC of the building. On the other hand, 
there is diversity in the functions of office and residential buildings, the differences in the work schedules, and the focus 
on the EC needs in cold regions and the hot-summer/cold-winter regions. This leads to significant differences in the patterns 
of EC influences (Najjar et al., 2022; Ding et al., 2022). 
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Fig. 1. Impact mechanism of sustainable building energy consumption 

Among building modeling simulation software, EnergyPlus is widely used due to its ability to fine-tune the simulation 
of building thermal processes and energy systems. The software is able to accurately simulate the EC dynamics of buildings 
under real-time meteorological conditions. Therefore, this study transforms complex building EC influences into 
quantifiable input parameters. Based on the simulation output of the full EC cycle of a building, a MOO model is 
constructed to consider both CL and EC. In the MO architectural design decision optimization for sustainable building 
models, it is necessary to clarify the correlation logic between specific decision variables and the objective function (OF). 
In the specific operation, the study selects 12 key system parameters as decision variables, as shown in Fig. 2. 
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Fig. 2. Decision variables in MOO problems 

In Fig. 2, the decision variables are generally categorized into five categories: building space and component properties, 
envelope thermal performance, indoor environment, equipment parameters, and air-conditioning system operation settings. 
At the level of building space and component properties, the room orientation xro mainly affects the solar heat gain and 
natural ventilation efficiency. Window length xwl and width xwh determine the window-to-wall ratio and daylight area, 
which affect the building EC and indoor illumination. The window's thermal insulation performance is reflected in the 
window heat transfer coefficient (xwhtc). Lower values indicate higher insulation at the envelope's thermal performance 
level. The window solar heat gain rate xshar measures the proportion of solar radiation entering the interior through the 
window. The thickness of the exterior insulation layer, xteil, affects the thermal performance of exterior walls. The external 
wall solar absorptivity xshar affects solar radiation absorption, where high summer absorptivity increases wall heat gain. At 
the indoor environmental and equipment parameters level, the occupant density xod determines the indoor heat and moisture 
load. The lighting power density xlpd and equipment power density xepd reflect the indoor electric equipment heat dissipation 
and EC, directly affecting the total building EC. At the air conditioning (AC) system level, the AC heating setting 
temperature xachs and AC cooling setting temperature xaccs control the temperature for winter heating and summer cooling. 
This affects EC and indoor comfort (Dalirazar et al., 2022; Usman et al., 2023). In addition, the material type can be 
indirectly quantified through the thermal performance parameters of the enclosure structure. Therefore, it does not need to 
be listed separately as a variable. Occupant schedules did not include dynamic variables as the experimental scenario has 
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been standardized. After assigning specific values to each parameter, the EnergyPlus building EC simulation software 
executes the simulation calculations. Based on the input parameters, the software can simulate the real-time energy flow 
and indoor thermal environment dynamics of the building throughout the year. The simulation outputs, the total annual EC 
of the building and the annual comfort hours in a year are output as the quantitative results of CL and EC, respectively. 
The calculation expression of CL is shown in Eq. (1). 

1

A

a
a

CL t
=

= ∆∑
                                                                                        (1) 

Calculation of comfort follows the internationally recognized ASHRAE 55 standard. In Eq. (1), A  is the total number 

of all time steps in a year. at∆  represents the duration of the a th time step. Its value depends on whether the indoor 
environmental parameters at the a th time step falls within the comfort zone. If temperature, humidity, and wind speed 

(WS) at the a th time step remains within the comfort interval, then 1at∆ = . Otherwise, 0at∆ = . The comfort interval 
follows ASHRAE 55 standard, which states that the comfort range for indoor temperatures is 20°C to 26°C. The comfort 
range for Relative Humidity (RH) is 30% to 70%, and the comfort range for Wind Speed (WS) is 0.1 m/s to 0.2 m/s. Eq. 
(2) shows the EC calculation. 

( ) ( ) ( ) ( ) ( )heat cool light vent equipEC E t E t E t E t E t = + + + + ∑
                                              (2) 

In Eq. (2), ( )heatE t , ( )coolE t , 
( )lightE t

, ( )ventE t , and 
( )equipE t

 denote heating, cooling, lighting, ventilation, and 
equipment system EC, respectively. The resulting multi-objective optimization model is shown in Eq. (3). 

min ( ( ), ( ))
. . ( , , , , , , , , , , , )ro wl wh whtc shar teil shar od lpd epd achs accs

F CL X EC X
s t X x x x x x x x x x x x x
 = −

=


                                  (3) 

In Eq. (3), X  denotes the decision variable. 

2.2. Multi-Objective Architectural Design Decision Optimization for Sustainable Buildings Based on Improved PSO 
Algorithms 

2.2.1. Principles and Iterative Mechanism of Basic PSO Algorithms 

After constructing the multi-objective architectural design decision model for sustainable buildings, the study proceeds to 
solve it. Given its fast convergence speed and strong global search capability, the study employs the PSO algorithm for 
model solution. PSO efficiently explores complex decision space in the MOO model by simulating collaborative foraging 
behavior in bird flocks. Its iteration mechanism effectively balances global exploration and local optimization (Akay et al., 
2022). The particle velocity update formula in PSO appears in Eq. (4). 

1
1 1 2 2( ) ( )t t t t

i i i i iv v c r pBest x c r gBest xω+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −                                        (4) 

In Eq (4), 
t
iv  and 

1t
iv +

 represent the velocity vectors of the particle i  at the t th and 1t + th iterations, respectively. ω  

is the IW, which balances the effect of the particle's previous velocity on the current iteration. 1c  and 2c  are learning factors 

that control the step size of the particle learning toward the individual optimal position (OP) ipBest  and the global OP 
gBest , respectively. 1r  and 2r  are random numbers in the interval [0,1]. Eq. (5) displays the position update expression. 

1 1t t t
i i ix x v+ += +                                                                                    (5) 

In Eq. (5), 
t
ix  and 

1t
ix +

 denote the position vectors of the particle i  at the t th and 1t + th iterations, respectively. The 
schematic diagram of particle iteration in the PSO algorithm is shown in Fig. 3. 

In the planar rectangular coordinate system of Fig. 3, the current position of the particle is 
tx , and the current velocity 

is 
tv . When iterating, the IW term ωvt maintains the original motion trend of the particle. The individual cognitive term 

1 1 ( )tc r pBest x⋅ ⋅ −  drives the particle to move toward its own historical OP. The social pBest -cognitive term 
2 2 ( )tc r gBest x⋅ ⋅ −  guides the particle toward the global OP gBest  of the population. The superposition of the three 

vectors obtains the new velocity 
1tv +

 and determines the new position 
1tx +

. The optimal solution is gradually 
approximated in this way.  
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Fig. 3. Schematic diagram of particle iteration in PSO algorithm 

2.2.2. BMOPSO Improvement and Adaptive Disturbance Mechanism Design 

However, there are more control parameters in the traditional PSO algorithm, which easily falls into local optima (Lu 
et al., 2023; Guo et al., 2022). Therefore, this study introduces the BMOPSO algorithm, which reduces the control 
parameters of the original algorithm. Understanding the single-objective particle update formula is a prerequisite to 
comprehending the MO formula. The backbone particle swarm optimization (BPSO) particle position update (PPU) 
calculation for a single objective problem is shown in Eq. (6). 

( ) ( ) ( ) ( ),
, ,( 1) ( , )

2
i j j

i j i j j

pBest t gBest t
x t N pBest t gBest t

+
+ = −

                                         (6) 

In Eq. (6), , ( 1)i jx t +
 denotes the new position of the particle i  on the j th decision variable in the 1t + th iteration. 

( , )N µ σ  denotes the Gaussian distribution function. Among them, µ  is the mean and σ  is the variance. Since the BPSO 
algorithm can be derived from PSO, a variant of Eq. (6) is thus obtained as shown in Eq. (7). 

( ) ( ) ( ) ( )

( )

,
,

,

,

( ,| |), (0,1) 0.5( 1) 2
,

i j j
i j j

i j

i j

pBest t gBest t
N pBest t gBest t Ux t
pBest t otherwise

 +
− <+ = 


                          (7) 

In Eq. (7), (0,1)U  is a uniformly distributed random number on the interval [0, 1]. Then it is extended to MO problem 
solving to obtain the BMOPSO algorithm. The PPU expression of this algorithm is displayed in Eq. (8). 

( ) ( ) ( ) ( )

( )

3 , 3
, ,

,

,

(1 )
,| | , (0,1) 0.5

2( 1)
,

i j j
i j i j

i j

i j

r pBest t r gBest t
N pBest t gBest t U

x t
gBest t otherwise

 × + − × 
− <   + =   


                     (8) 

In Eq. (8), 3r  denotes a random number in [0, 1]. When ( ),i jpBest t
 approaches ( ),i jgBest t

. The normal distribution 
sampling result approaches the global optimum. However, this causes particles to persistently search near known regions, 
limiting exploration. To address this, an enhanced BMOPSO method incorporating an adaptive perturbation mechanism is 
introduced. The adaptive perturbation mechanism triggers automatically when search stagnation is detected. This 
perturbation pushes particles from current regions to explore new areas and does so to explore new possibilities. 
Disturbance magnitude adapts dynamically. When particle diversity is low, amplitude increases to enhance the exploration; 
when high, it decreases. The PPU for this algorithm appears in Eq. (9). 

( ) ( ) ( ) ( )

( )

3 , 3
, ,

,

,

(1 )
,| | , (0,1) 0.5

2( 1)
,

i j j
i j i j j

i j

i j

r pBest t r gBest t
N pBest t gBest t U

x t
gBest t otherwise

β
 × + − × 

− + <   + =   

                  (9) 

In Eq. (9), jβ  denotes the perturbation factor. Its value depends on the similarity between the global extreme points 
and the individual extreme points, as shown in Eq. (10). 

( 5 / )max min( ) ,
0,

t T
j j d

j
x x e pro rand

otherwise
β

− − × ≥
= 
                                                     (10) 
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In Eq. (10), 
max
jx

 and 
min
jx

 display the maximum and minimum values taken by the j th decision variable. T  is the 

maximum iteration. dpro  is the disturbance probability, as shown in Eq. (11). 

( )
max min

1

( ) ( ( ))10.5 (1 m i m i
d

q m m

Q f PBest t f GBest t
p

fQ
ro

f=

−
= × −

−∑
                                              (11) 

In Eq. (11), ( )iPBest t  is the individual extreme value point and ( )( )q if PBest t
 is the q th OF value of the point. 

( )iGBest t  is the global extreme value point, 
( ( )q if GBest t

 is the q th OF value of the point. 
max

qf  and 
min

qf  denote the 

maximum and minimum values about the q th OF value, respectively. Q  denotes all the OF values. Fig. 4 depicts the flow 
of the enhanced BMOPSO algorithm. 
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Fig. 4. Flowchart of improved BMOPSO algorithm 

Initializing the parameters and particle population is the first step in the enhanced BMOPSO method shown in Fig. 4. 
It then iteratively optimizes building EC and CL by calculating the value of the objective functions, updating the external 
archive, selecting the global and individual best positions, and updating the particle positions. The algorithm terminates 
upon reaching the maximum iteration, outputting the non-dominated solutions from the external archive as the final result.  

2.3. Experimental Platform Setup and Implementation Process 

To realize MO architectural design decision optimization for sustainable buildings, the research integrates EnergyPlus, 
Matlab, and Visual C++ to complete the platform construction of the improved BMOPSO algorithm. The specific 
implementation process appears in Fig. 5. 
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Fig. 5. Platform construction for improving BMOPSO algorithm 

In Fig. 5, the room model is first constructed in EnergyPlus, where model parameters are initialized, and simulation 
results are generated. Next, the improved BMOPSO algorithm is implemented in Matlab, while a Visual C++ program 
handles particle position updates. Updated particle positions are imported into EnergyPlus, which activates the software 
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and inputs the decision variables. After EnergyPlus is run, Matlab reads the results and determines if the criteria are met. 
If satisfied, the optimization is completed. If not satisfied, the process returns to updating particle positions, and iterations 
continue until an optimal solution is found. 

3. Results 

To validate the improved BMOPSO algorithm’s effectiveness for MO architectural design decision optimization, two 
building scenarios are analyzed: a single office and a three-room residence. These scenarios differ significantly in terms of 
functional requirements, personnel density, and equipment usage patterns. They represent major commercial and residential 
building types, effectively testing algorithm adaptability under varying constraints. Performance metrics include the spatial 
coverage (SC) measure, hypervolume (HV) strategy, running time (RT), and Pareto frontiers, which are used as 
performance evaluation metrics for each algorithm. Finally, CL and EC optimization results are compared for the BMOPSO 
algorithm before and after improvements. 

3.1. Experimental Scenario and Environment Design 

The study uses the suggested algorithm in two construction situations to confirm its efficacy. Scenario 1 is a single-room 
office building, and Scenario 2 is a three-room residential building. The styles of different scenario buildings are shown in 
Fig. 6. 

9.0 m

4.5 m

3.8 m

(a) Scenario 1 (b) Scenario 2
6.8 m 4.0 m4.0 m

3.5 m

3.8 m

 
Fig. 6. Styles of buildings in different scenarios 

Table 1 displays the range of values for each choice variable. 

Table 1. Range and initial values of 12 decision variables in multi-objective optimization model 

Decision variables Range  Initial value 
xro (°) [0, 360] 180 

xwl (m) (0.8, 2.5) 1.5 
xwh (m) (0.8, 2.8) 1.4 

xwhtc [w/(m2·k)] (1.8, 4.5) 2.8 
xshar (0.2, 0.6) 0.4 

xteil (m) (0.03, 0.08) 0.05 
xshar (0.3, 0.8) 0.5 

xod (persons/m2) (0.15, 0.3) 0.25 
xlpd (w/m2) [5, 10] 7 
xepd (w/m2) [8, 15] 12 
xachs (℃) [18, 22] 20 
xaccs (℃) [24, 27] 25 

Table 2 displays the experimental hardware environment. 

Table 2. Experimental hardware environment configuration parameters of optimized BMOPSO algorithm 

Name Setup 

Operating system Windows 10 64 bit 
CPU I7-8750H, Six core, 2.20GHz 

Memory 8GB 
Hard disk 1T 

GPU NVIDIA GeForce GTX 1050Ti 
 

3.2. Comparative experimental validation 

The study compares several popular MOO algorithms, such as MOPSO, NSGA-II, and MO artificial hummingbird 
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algorithm (MOAHA), to confirm the superiority of the suggested enhanced BMOPSO algorithm in MO architectural design 
optimization for sustainable buildings. The maximum iteration count is set to 100, and the population size is 100. Spacing 
SC, HV strategy, RT, and Pareto frontier are selected as performance evaluation metrics of each algorithm. Each algorithm 
executes ten times, and the average value is used as the final result to ensure the reliability of the results. Preliminary testing 
confirms 100 iterations for all algorithms to reach a convergence state. Fig. 7 displays each algorithm's HV values across 
various conditions. The average HV value of the enhanced BMOPSO method in Scenario 1 of Fig. 7(a) is 29963, but the 
NSGA-II is only 19246, a number that is much lower than that of the enhanced BMOPSO algorithm. In Fig. 7(b), the 
average HV of the improved BMOPSO algorithm is as high as 42639 in Scenario 2, while MOPSO and MOAHA are only 
14628 and 15639, respectively. The improved algorithm maintains the highest HV across scenarios with minimal 
performance fluctuation between scenarios. This demonstrates strong robustness and is suitable for diverse building 
scenarios. Other algorithms show substantial inter-scenario fluctuations, exposing high sensitivity to scenarios. 
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Fig. 7. HV values of various algorithms in different scenarios 

The study further compares SC values of each algorithm in different scenarios. The results are shown in Table 3. SC 
(#Improved BMOPSO) indicates the percentage where comparison algorithms dominate Improved BMOPSO. SC 
(Improved BMOPSO, #) indicates where improved BMOPSO dominates comparison algorithms. In Table 3, the SC mean 
value of the improved BMOPSO algorithm with respect to NSGA-II is as high as 1.000 in Scenarios 1 and 2. Meanwhile, 
the SC mean value of NSGA-II with respect to the improved algorithm is 0. This indicates that all the solutions of the 
improved algorithm completely dominate the solutions of NSGA-II. SC mean values for the improved algorithm are 0.364 
and 0.361 for MOPSO and 0.314 and 0.386 for MOAHA in different scenarios. Whereas the SC mean values of MOPSO 
against the improved algorithm are 0.089 and 0.281. The SC mean values of MOAHA against the improved algorithm are 
0.173 and 0.151, which are lower than the corresponding values for the improved algorithm against MOPSO and MOAHA. 
This demonstrates the enhanced algorithm's overall convergence superiority over the three comparable methods. 

The study further compares the runtime of each algorithm in different scenarios. In Fig. 8(a), Scenario 1, the average 
runtime of the improved BMOPSO algorithm is only 1.38h, whereas the MOAHA algorithm has the longest runtime, with 
a high average of 1.83h. The NSGA-II has an average runtime of 1.64h, which is higher than that of the improved BMOPSO 
algorithm by 0.26h and lower than that of the MOPSO algorithm by 1.73h. In Fig. 8(b), in Scenario 2, the average runtime 
of the improved BMOPSO algorithm is only 3.38h, whereas the NSGA-II reaches an average of 5.58h. It exceeds the 4.51-
hour time of the MOPSO algorithm. At 6.03 hours, the MOAHA algorithm continues to have the longest runtime. This 
shows that the improved BMOPSO algorithm proposed by the study maintains the minimum runtime in different scenarios 
compared to the rest of the algorithms. The method effectively enhances both time efficiency and scene robustness. 

Table 3. SC measurement values of various algorithms in different building scenarios 

Scenario Algorithm 
SC (Improved BMOPSO, #) SC (#, Improved BMOPSO) 

Best Worst Average Std Best Worst Average Std 

Scenario 1 
NSGA-II 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 

MOPSO 0.437 0.291 0.364 0.060 0.154 0.024 0.089 0.056 
MOAHA 0.349 0.279 0.314 0.024 0.217 0.129 0.173 0.031 

Scenario 2 
NSGA-II 1.000 1.000 1.000 0.000 0.000 1.000 1.000 1.000 
MOPSO 0.421 0.301 0.361 0.045 0.301 0.261 0.281 0.016 
MOAHA 0.401 0.315 0.386 0.066 0.191 0.111 0.151 0.033 

 

https://zhida.zhihu.com/search?content_id=247593823&content_type=Article&match_order=1&q=MOAHA&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTEwNzMyOTUsInEiOiJNT0FIQSIsInpoaWRhX3NvdXJjZSI6ImVudGl0eSIsImNvbnRlbnRfaWQiOjI0NzU5MzgyMywiY29udGVudF90eXBlIjoiQXJ0aWNsZSIsIm1hdGNoX29yZGVyIjoxLCJ6ZF90b2tlbiI6bnVsbH0._rQIWRbFEE9Gk8rgA_D_bndrnLoOnF7-szRpAO4Y8vI&zhida_source=entity
https://zhida.zhihu.com/search?content_id=247593823&content_type=Article&match_order=1&q=MOAHA&zd_token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJ6aGlkYV9zZXJ2ZXIiLCJleHAiOjE3NTEwNzMyOTUsInEiOiJNT0FIQSIsInpoaWRhX3NvdXJjZSI6ImVudGl0eSIsImNvbnRlbnRfaWQiOjI0NzU5MzgyMywiY29udGVudF90eXBlIjoiQXJ0aWNsZSIsIm1hdGNoX29yZGVyIjoxLCJ6ZF90b2tlbiI6bnVsbH0._rQIWRbFEE9Gk8rgA_D_bndrnLoOnF7-szRpAO4Y8vI&zhida_source=entity
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The study further compares algorithm Pareto frontiers across scenarios, as shown in Fig. 9. In both scenarios, the 
improved BMOPSO Pareto frontier lies closer to the low-EC/high-CL region with a more uniform distribution. It shows 
clear advantages in balancing the building EC and comfort. NSGA-II shows a relatively inferior and dispersed frontier 
struggling to balance EC and comfort. The MOPSO and MOAHA algorithms perform better than the NSGA-II, but are 
still inferior to the BMOPSO algorithm. This demonstrates how the backbone guidance and adaptive perturbation 
mechanism enhance convergence accuracy and solution diversity. The approach efficiently identifies optimal EC-comfort 
trade-offs in complex building scenarios. 

The study concludes with EC and CL optimization tests for buildings across scenarios, comparing the unimproved 
BMOPSO algorithm with the improved BMOPSO version. As iterations progress, the EC value decreases while the CL 
value increases. In Fig. 10(a), in Scenario 1, the BMOPSO algorithm converges around 40 iterations, and the CL value 
stabilizes at 4351h. The improved BMOPSO algorithm, on the other hand, converges only around 20 iterations, and the 
CL value stabilizes at 4836h. In Fig. 10(b), the EC value of the improved BMOPSO algorithm is finally stabilized at 
625kWh, which is a decrease of 3475kWh compared to the BMOPSO algorithm. In Figs. 10(c) and 10(d), in Scenario 2, 
the CL value of the improved BMOPSO algorithm is finally stabilized at 7625h, which is an increase of 693h compared to 
the BMOPSO algorithm. Meanwhile, the improved algorithm's EC value is finally stabilized at 1953kWh, while the 
BMOPSO algorithm is as high as 2369kWh. It indicates that the improved BMOPSO algorithm achieves a better balance 
between the dual objectives of user comfort and building energy efficiency. 
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Fig. 8. Runtime of various algorithms in different scenarios 
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Fig. 9. Pareto frontiers in different scenarios 
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Fig. 10. EC and CL optimization testing 

4. Discussion and Conclusion 

The study proposed an improved BMOPSO algorithm for MO architectural design decision optimization for sustainable 
buildings. Furthermore, its effectiveness was verified through various experiments. Regarding HV values, the enhanced 
BMOPSO method in Scenario 1 had an average HV value of 29963, which was noticeably higher than NSGA-II's (19246). 
In Scenario 2, the average HV value was as high as 42639, which was much higher than that of MOPSO (14628) and 
MOAHA (15639), with minimal fluctuation between scenarios. As the improved algorithm optimizes the search strategy, 
it enhanced the robustness of MOO and adapted to different building scenarios, while the comparison algorithms were 
highly sensitive to the scenarios. The SC value results revealed that the SC mean value of the improved BMOPSO algorithm 
with respect to NSGA-II was 1.000, which completely dominated the NSGA-II solution. The SC mean values for MOPSO 
and MOAHA were also significantly higher than the comparison algorithms. This stemmed from better convergence of the 
solution set and was able to approximate the optimal solution more efficiently in the search. In terms of RT, the average 
runtime of improved BMOPSO was 1.38h in Scenario 1 and 3.38h in Scenario 2, both of which remain the lowest. This 
resulted from dynamic particle updates and other strategies to reduce invalid computation and improve time efficiency. 
The comparison of Pareto frontiers indicated that the frontiers of the improved BMOPSO algorithm were closer to the low 
EC and high comfort areas and uniformly distributed, which enabled a better balance between the EC and comfort of the 
building. The primary cause was that the improved algorithm enhanced the global search and MO co-optimization 
capabilities, whereas the conventional method was prone to slipping into the local optima. In the EC and CL optimization 
test, the improved algorithm converged faster, achieving a higher CL value and a lower EC value. In Scenario 1, the 
improved BMOPSO algorithm converged in about 20 iterations, and the CL value was stabilized at 4,836 hours. In Scenario 
2, the EC stabilized at 1,953 kWh, achieving a better balance between user comfort and building energy savings. In 
summary, the improved BMOPSO algorithm demonstrates better performance in MO architectural design decision 
optimization for sustainable buildings. The research results have significant practical value. This algorithm can be 
encapsulated as a plugin and integrated into existing building information models or computer-aided design software. In 
the early stages of designing a scheme, designers only need to input preliminary design parameter ranges to quickly obtain 
a Pareto frontier solution set that optimizes the balance between EC and comfort. Designers can intuitively see the impact 
of adjusting a parameter on two objectives through a visual interface, thereby making more efficient decisions. 

However, the study only tests two scenarios: a single office and three residential buildings, and does not involve 
complex scenarios such as high-rise buildings and commercial complexes. In the future, it is necessary to expand the types 
of scenarios to enhance the versatility of the algorithm. Additionally, the simulation results of building EC and comfort 
rely on the built-in model of EnergyPlus. Deviations between actual parameters and software assumptions in actual 
engineering may affect the accuracy of the optimization results. Therefore, the simulation model should be calibrated based 
on monitoring data from actual buildings. 
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