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Abstract: The increasing adoption of prefabricated construction has made formwork a key factor that directly affects
project cost, construction time, and quality. Traditional optimization methods, however, often struggle to address the
variability of prefabricated components and the complexity of production environments. To overcome these limitations,
this study develops an optimization model for prefabricated formwork by combining particle swarm optimization, genetic
algorithm, and differential evolution within a three-swarm cooperative framework. The model considers objectives related
to cost, construction period, and quality, and applies the analytic hierarchy process to support multi-criteria decision-
making. Experimental validation with real production data shows that the model reduced the production time of a single
component from 34.93 hours to 29.89 hours. For a complete order of 17 components, total labor hours decreased by 27.32%
and costs by 23.56%. These results confirm that the proposed approach not only improves optimization performance but
also delivers practical value for scheduling and resource allocation in prefabricated construction projects.
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1. Introduction

The prefabricated building market is experiencing substantial growth, fueled by the advancement of “dual carbon” goals
and the rise of construction industrialization. As the main component in prefabricated building production, formwork
directly impacts cost, construction duration, and quality consistency (Fazeli et al., 2022). Data indicate that optimizing
formwork can cut material waste by 15% to 20% and reduce construction time by 10% to 15%, making it a key factor in
lowering costs and boosting efficiency in the industry (Han et al., 2023). Traditional optimization methods mainly depend
on mathematical modeling and operations research to find the best solutions. However, due to varying component sizes
and changing site conditions, overly simplified models often create gaps between theoretical outcomes and real-world
practice. Particle Swarm Optimization (PSO) offers benefits such as a simple structure and quick convergence, making it
effective for finding near-optimal solutions (Liu et al., 2022). Differential Evolution (DE), based on swarm intelligence,
demonstrates strong global search ability and robustness (Bujok et al., 2023). Genetic Algorithm (GA), inspired by natural
selection and genetic evolution, is suitable for large-scale, complex problems requiring global optimization (Alam and
Arya, 2022). Nevertheless, each algorithm also faces limitations, such as a tendency to get stuck in local optima, limited
local search accuracy, low computational efficiency, and premature convergence. To tackle these challenges, this study
develops a three-swarm differential PSO algorithm that combines the strengths of all three methods. By improving data
processing, clarifying problem constraints, and including diversity maintenance strategies, the model aims to optimize
formwork for prefabricated building components. Its goal is to lower costs, shorten construction times, and improve quality.
This study presents a new method by applying these three algorithms within a cooperative swarm structure, offering
innovative solutions for formwork optimization in prefabricated construction.

2. Related Works

In the field of optimization algorithms, intelligent optimization methods have developed rapidly to address complex
problems. Studies on multi-swarm Differential Evolution (DE) and Improved Particle Swarm Optimization (IPSO) have
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been widely conducted by scholars from different countries. These methods have been applied in various domains. For
example, Pirozmand et al. (2023) proposed a multi-adaptive learning PSO algorithm to address the impact of task
scheduling on service quality in cloud computing environments. By defining two types of particles to reduce initial
population diversity, their experiments showed that this method achieved better efficiency and accuracy in multi-objective
tests. Yang et al. (2022) put forward a clustering-based competitive PSO algorithm to solve the problem of sparse
optimization being overlooked in Pareto frontiers. This method combined PSO with competitive group optimizers to
balance the search process. Nama and Saha (2022) proposed an improved multi-swarm Backtracking Search Algorithm to
enhance global optimization performance. They introduced a new mutation strategy and adaptive parameter updates.
Ankita and Sahana (2022) developed a balanced PSO algorithm to solve the challenge of effective application scheduling
in dynamic grid environments. By optimizing scheduling, the algorithm reduced job execution time, improved resource
utilization, and offered scalability. Experiments confirmed that it outperformed various deterministic and heuristic methods.
Parouha and Verma (2022) addressed the limitation of traditional meta-heuristic algorithms that often fall into local optima.
They introduced a hybrid algorithm based on DE and PSO, adding new strategies and parameter adjustments to balance
global and local search capabilities. Results showed that this hybrid algorithm performed better than other similar
approaches.

Although extensive studies have been conducted on multi-swarm DE and IPSO, their application in the field of
prefabricated buildings has remained limited. Some progress has been made using other approaches in this domain. For
example, Du et al. (2023) proposed an improved biogeography-based optimization method to address the impact of
ignoring participant behavior in the production of prefabricated components. Case studies demonstrated that this method
optimized production planning and improved the ability to handle uncertainty, ultimately enhancing project efficiency. Zou
and Feng (2023) developed a multi-objective simulation optimization method to overcome the negative effect of
uncertainty on the performance of prefabricated construction. By refining activity logic to balance objectives, their
experiments demonstrated significant improvements in construction time and cost, thereby supporting informed project
decision-making. Almashagbeh and El-Rayes (2022) developed an optimization model to reduce the high costs associated
with the transportation and storage of prefabricated modules. The model was constructed by identifying variables, defining
objective functions, and setting constraints. Zou and Feng (2023) developed an optimized prefabricated component library
and simulation model to enhance efficiency and reduce costs in Building Information Modeling (BIM) for prefabricated
buildings. Their experiments demonstrated that the method increased efficiency, lowered costs, and improved overall
project performance. Xiao and Bhola (2022) carried out collaborative design using Building Information Modeling to
address its limitations in the design of prefabricated buildings.

Although existing research has made progress in optimisation algorithms and certain aspects of prefabricated
construction, most work either emphasizes general algorithmic innovation or focuses on localized issues such as
transportation, storage, or component libraries. Systematic research remains relatively scarce concerning the optimisation
of prefabricated formwork, which directly impacts production costs, construction schedules, and quality. Furthermore,
existing methods exhibit limited robustness testing across diverse production scenarios and offer insufficient guidance for
construction management practices. Consequently, a significant research gap persists in developing an integrated,
application-oriented framework for optimising prefabricated formwork. To address this deficiency, this study proposes a
tri-population collaborative optimisation model integrating PSO, GA, and DE algorithms, supplemented by the Analytic
Hierarchy Process (AHP) for multi-objective decision-making. Unlike previous studies, this research explicitly integrates
computational intelligence methods with scheduling and resource allocation problems in prefabricated construction
processes. While achieving methodological innovation, it further emphasises its application value in engineering
management practice.

3. Model Construction for Template Optimization of Prefabricated Components
3.1. Design of Three-Swarm Differential PSO Combined with GA and DE

Prefabricated component templates must be optimized in terms of cost control and production cycle to enhance the
production efficiency and quality of prefabricated buildings (Pereira et al., 2022). This study integrates GA and DE with
PSO through parallel and cooperative operations to computationally solve the above problem. PSO shares information
among particles in the swarm, enabling different individuals to explore various areas in the solution space to find the
optimal solution by continuously updating particle positions and velocities (Demir and Sahin 2023). The velocity update
equation is shown in Eq. (1).
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In Eq. (1), k denotes the number of iterations. is the velocity of particle ! in the dimensional space. ¥ is
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the position of the particle. @ is the inertia weight. ! and 2 are the cognitive and social learning factors, respectively.

| gbest g pbest

' is a random number between 0 and represents the personal best, an represents the global best. The

position update equation is shown in Eq. (2).
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In Eq. (2), k is the number of iterations. ’d'm( ) is the current position of particle ! in the dimensional space. V' is



Journal of Engineering, Project, and Production Management, 2026, 16(1), 2025-152

the particle's velocity. In traditional PSO, the inertia weight is usually constant, limiting the ability to adapt velocity over
iterations. However, in practice, the inertia weight should vary with iterations. A nonlinear inertia weighting method
accelerates the reduction of speed in the early and middle stages, improving global search performance. The nonlinear
inertia weight is calculated by Eq. (3).

)In(1+iter /iter,, )

- ( max m1n

3

In Eq. (3), Ornax and Orin represent the maximum and minimum values of the inertia weight, respectively. iter g

. . iter . . . . .
the current iteration number, and max js the maximum iteration number. The learning factors affect the global
optimization ability of PSO. Instead of using fixed values, the learning factors are optimized as shown in Eq. (4).
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In Eq. (4), s and 1 are the initial values of 2 and C2’ while “¢ and ©2¢ are their final values, respectively.
Learning factors that vary with iterations enhance global search ability and speed, making it easier to achieve the global
optimum through fine local search. The flowchart of the IPSO is shown in Fig. 1.
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Fig. 1. Schematic diagram of the workflow of the IPSO algorithm

As shown in Fig. 1, the process begins by calculating the fitness value, followed by the initialization of the swarm and
particle velocities. It then searches for the personal and global best positions. The particle velocity and position are updated
using the improved equations. Fitness values are then recalculated. If the termination condition is met, the optimal solution
is output. Otherwise, the process continues to iterate. Although IPSO offers several advantages, running it independently
may result in premature convergence, which lowers accuracy and limits particle diversity (Parouha and Verma, 2022; Bujok
et al., 2023). DE addresses this issue by evolving solutions through mutation, crossover, and selection. It is simple in
principle, converges quickly, and offers strong robustness (Tiwari et al., 2024). Therefore, DE is integrated to generate
better individuals using its mutation mechanism. The mutation operation is shown in Eq. (5).

ot t t
0, =x, +11x(x, +x,) 5)

In Eq. (5), b denotes a random and distinct function. ! represents the target individual. ? is the current iteration, and
I is the dimensional index. ¥ is the target vector, and 0 is the mutant vector's value in the same dimension, i.e., the new
mutant individual. 7 is the scaling factor. The crossover operation is shown in Eq. (6).

P =(1—rand(SC))><0ir +rand(S,)xx, ©

In Eq. (6), P s the crossover vector, or the new offspring. " and is the function used to generate a random number.
The comparison of the second-generation fitness values is shown in Eq. (7).

PP <F(X)
+1 ir

X = p

' (7)

t
InEq.(7), * ¢ isthe position vector before iteration, and F(Xi) is the fitness function value of the target vector. The
DE algorithm flowchart is shown in Fig. 2.
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Fig. 2. Schematic diagram of DE algorithm operation process

As shown in Fig. 2, the process begins by initializing individuals and calculating their fitness values. New individuals
are generated through mutation and crossover. Their fitness is evaluated, and the process iterates until the termination
condition is met, after which the optimal solution is output. When IPSO stagnates, DE helps it escape from local optima.
However, combining the two still faces the challenge of a single search strategy. In complex, high-dimensional problems,
performance may degrade, convergence may slow, and the algorithm may still fall into local optima. To address this, GA
is introduced to complement the deficiencies by simulating natural selection, crossover, and mutation to iteratively explore
potential solutions. In the selection phase, the probability of an individual being selected for reproduction is proportional
to its fitness. The probability calculation is shown in Eq. (8).
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In Eq. (8), @ represents a vector encoding the individual's features. P s the probability of being selected. / is the

fitness value. ” is the total number of individuals. ! and 7 are individuals in 7. In the crossover phase, selected
individuals generate offspring through crossover, and the resulting offspring are represented in Eq. (9).

L
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In Eq. (9), a' represents the offspring of @ . The DE algorithm modifies certain genes of newborn individuals with a
small probability, thereby introducing mutations and increasing the diversity of the population. The mutation operation is
shown in Eq. (10).

a, =a, +J,withprobabilityu (10)

In Eq. (10), a is the mutated gene. M is the mutation rate. 6 is a small random change. Repeating these steps across
generations enables GA to gradually improve the quality of solutions and approach the optimal. However, GA may
encounter difficulties such as a large search space and local optima in complex problems. ANN has a strong learning ability,
and its rapid learning feature can guide GA to enhance search efficiency (Stojanovié et al., 2022). The operation flow chart
of ANN-GA is shown in Fig. 3.
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Fig. 3. ANN-GA operation flow chart

As shown in Fig. 3, the process begins with random sampling to select test samples, which are then input into the ANN
prediction module for training. Next, the initialization module is created, and a tolerance analysis is performed. If the
tolerance meets the requirements, the final ANN module is generated. Otherwise, weights and thresholds are adjusted. The
initial parameters of ANN-GA are set to generate the optimal prediction module. Based on the defined constraints and
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optimization goals, the fitness value is calculated. If the termination condition is met, the result is output. If not, the selected
individuals undergo crossover and mutation to create a new population, returning to the parameter setting step for the next
iteration. These three algorithms run in parallel and work together. IPSO provides an initially optimized region for DE and
ANN-GA, narrowing the search scope. DE continuously generates diverse individuals during the search process, providing
enriched material for ANN-GA. ANN-GA further refines the solutions produced by IPSO and DE, selecting better results.
Their cooperation enhances global search capabilities, local refinement, and multi-objective handling.

3.2. Development of the Template Optimization Model for Prefabricated Components

After developing the three-swarm differential PSO, this study builds an optimization model for prefabricated building
component formworks based on the algorithm and practical requirements. The optimization process needs to consider cost,
construction period, and quality. The cost includes materials, manufacturing, and transportation. The cost objective function
sums all items based on material types and unit prices. The construction period is calculated by summing the time for each
stage from design to installation. The quality is measured by accuracy and strength. These three objectives are shown in

Eq. (11).

be= Z?:ml P+ Z}er/h/ +ZZ:1 Sklk

FT = erzlt“

1
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)

In Eq. (11), FC represents the cost objective function. P is the unit price of material, and 4 is the quantity. g is the
unit cost of each manufacturing step, and hj is the workload. S is the unit cost of transportation, and lk is the
transportation distance. nm, "y , and & are the number of material types, process steps, and transportation segments,
respectively. Fr represents the construction period objective function. L is the time of each stage, and My is the number
of stages. FQ represents the quality objective function. E and \) are the indicators of accuracy, error and strength. @

and 2 are the corresponding weight coefficients. In formwork optimization, population diversity affects whether the

algorithm can find high-quality solutions (Kunakh et al., 2023). This matches the use of the three-swarm differential PSO.
Before running the algorithm, this study introduces the average Euclidean distance among individuals in the population as
the diversity evaluation index. The Euclidean distance and its average expression are shown in Eq. (12).

dy = \/ZZ:1 (6 =x;)’
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In Eq. (12), N s the number of individuals. ~ % is the value of the individual / on the k parameter. Y is the

Euclidean distance between individuals, and D is the average Euclidean distance. In multi-dimensional space, population
diversity is measured using individual distances. A lower average indicates insufficient diversity. Some individuals are
reinitialized by randomly resetting parameters or adding small random disturbances. The evaluation process is shown in
Fig. 4.
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Fig. 4. Schematic diagram of the diversity assessment process
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As shown in Fig. 4, after initializing the algorithm, it calculates the average distance between individuals to assess
diversity. If the diversity is sufficient, the algorithm proceeds with iterative optimization. Otherwise, it introduces random
disturbances and reinitializes some parameters. After improving diversity, the algorithm performs parallel computation
using the three-swarm differential PSO. The geometric mean of the results is used to improve stability and adaptability. In
the cooperation stage, the algorithm exchanges top-performing individuals based on fitness ranking to enhance optimization.
However, the objectives of formwork optimization may conflict. This study applies the AHP to support decision-making.
The AHP structure is shown in Fig. 5.

| Scenario layer
—_— — — — —. ]

Fig. 5. Schematic diagram of the mechanism of AHP

As shown in Fig. 5, AHP first divides the multi-objective problem into a goal layer, a criteria layer, and an alternatives
layer. Then it constructs a judgment matrix to compare the importance of each element and determine its weight. Finally,
it calculates the comprehensive score of each candidate under different objectives, ranks them, and selects the optimal one
that meets practical needs. This method provides scientific and rational decision-making for real production and helps to
find better solutions in multi-objective optimization. By combining the objective functions, diversity evaluation, AHP, and
the proposed three-swarm differential PSO, the study builds an optimization model for formwork. The complete process is
shown in Fig. 6.
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Fig. 6. Optimization process of prefabricated building formwork

As shown in Fig. 6, the process begins by defining objectives and constraints for cost, time, and quality, followed by
data collection and cleaning. After parameter setting and population initialization, a diversity maintenance mechanism is
applied through random disturbances or reinitialization. The algorithm then evaluates fitness, identifies the global best, and
checks termination conditions. If unmet, a cooperation strategy is executed until convergence. The three-swarm differential
PSO operates in parallel, increments the generation count, and repeats the process. Once the termination condition is
satisfied, the algorithm exchanges top-performing individuals among swarms. It then applies AHP to process the results
and outputs the optimized formwork solution.

4. Experimental Analysis of the Proposed Prefabricated Building Model
4.1. Experimental Setup

To ensure the fairness and validity of the proposed optimization model, this study designed the following experimental
setup. Firstly, during the algorithm performance validation phase, the Holder function, Rastrigin function, and Zitzler-Deb-
Thiele (ZDT) test set were selected as benchmark functions to evaluate the convergence and accuracy of single-objective
and multi-objective optimization. Secondly, during the practical application validation phase, production data from a
precast component factory were collected through field surveys and structured interviews. This included key indicators
such as process duration, material consumption, and defect rates. The specific details of the experimental platform's
software and hardware environment are presented in Table 1.
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Table 1. Experimental hardware and software environment configuration

Project

Configuration notes

Category
Processor
. Memory
Hardware environment
Storage

Graphics card
Operating system

Intel Core 17-12700H, 2.3 GHz, 14cores
16 GB DDR4

512 GB SSD

NVIDIA RTX 3060, 6 GB

Windows 10 (64 bites) / Ubuntu 20.04

Software environment Programming environment

Libraries/Toolkits

Python 3.6 / MATLAB R2021a
NumPy, SciPy, Matplotlib, OpenCV

4.2. Performance Verification of the Improved Three-Swarm Differential PSO

To evaluate the performance of the improved multi-population differential PSO, the proposed algorithm was compared
with two hybrid algorithms: Whale Optimization Algorithm combined with PSO (WOA-PSO) and DE combined with
Artificial Bee Colony (DE-ABC). The three algorithms were tested on the Rastrigin and Holder benchmark functions. The
Rastrigin function was executed 20 times, and the results are shown in Fig. 7.
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Fig. 7. Performance comparison of test functions

As shown in Fig. 7(a), in the Holder function test, the proposed algorithm achieved a rapid decline in function values
as the number of iterations increased, reaching -18 at the 8th iteration and then stabilizing. DE-ABC showed a decrease
from -2 to -10.5 by the 11th iteration and then stabilized. According to Fig. 7(b), during the 20 runs of the Rastrigin function
test, the function values of the proposed algorithm ranged from 0.08 to 0.23, with an average of 0.16. These results indicated
that the proposed algorithm achieved a good balance between computational efficiency and accuracy, while also
demonstrating faster convergence. To analyze the algorithm’s capability in solving single-objective problems, a series of
standard test functions and the ZDT benchmark set were selected for further evaluation. The specific expressions of the
functions are shown in Table 2.

Table 2. Test functions used in the experiment

. Optimal Optlrpal Function  Variable
Function Boundary solution ) .
value . feature dimension
condition
20 20 20
F1=>"x7+(>_0.5ix, )" +(D_0.5ix,)* [-5,10] 0 / / /
i=1 i=1

i=1

F2=-20exp(-0.2 /%ixf)—exp(%icos@mcf))+20+e [-32,32] 0 / / /

_ 3 2 _ (.2 252
F3= (70.05+x2+y2) (x*+3%) [-32,32] -3600 / / /
F4=1+sin?(x)+sin’(y)—0.lexp(—(x* + y*)? [-10,10] 0.9 / / /
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Table 2. Test functions used in the experiment (continued)

. Optimal Optimal solution  Function  Variable
Function Boundary o, . .
value condition feature dimension
fix)=x, x, €[0,1]
ZDT14 f1(x) = g(x)A =~/ f1(x)/ g(x)) [0,1] / x=0 Convex n=30
g(x) =149 (x)/ (n—1) i=2,0m
i=2
Si(x0)=x, x, €[0,1]
ZDT2{ £,(0) = (1= (£,(x) / ()] [0,1] / %, =0 Non- n=30
n . convex
() =1+9>"(x))/ (n—1) 1=2,..n

As presented in Table 2, F1 consisted of a combination of power terms, F2 the Ackley function, F3 involved fractional
and power operations, and F4 combined trigonometric and exponential components. ZDT1 and ZDT2 were two sets of
multi-objective functions. Through this diverse set of functions, the study evaluated the proposed algorithm’s performance

in solving both convex and non-convex functions in multi-objective optimization scenarios. The optimization results are
displayed in Fig. 8.
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Fig. 8. Optimization curves of different objective functions

As shown in Fig. 8(a), the initial fitness values of functions F1 to F4 varied in the single-objective tests. A noticeable
downward trend emerged after 5, 4, 6, and 3 generations, respectively, eventually approaching zero or a stable value. Fig.
8(b) shows that, in the multi-objective tests, the proposed algorithm generated tightly clustered solutions when solving
ZDT1 and ZDT2, which have convex and non-convex characteristics, respectively. These findings demonstrated that the
proposed algorithm achieved accurate convergence and evenly distributed solutions when handling functions with different
features, delivering strong performance in both single-objective and multi-objective optimization.

4.3. Performance Verification of the Component Optimization Model

After validating the performance of the proposed algorithm, further tests were conducted to assess its practical application
in optimizing the formwork scheduling model for prefabricated components in construction. Experiments were conducted
using MATLAB R2021a on a Windows 10 system with 16GB RAM and an Intel Core i7-12700H CPU. Prefabricated
component order data were collected from a local manufacturer through field visits and interviews. The proposed model
was compared with two hybrid algorithms: PSO combined with Ant Colony Optimization (PSO-ACO) and Tabu Search
combined with GA (TS-GA). One prefabricated component was selected; the average processing duration was calculated
for multiple repetitions of each operation. Operations N1 to N9 represented stages such as initial preparation, rebar

processing, and embedded part production. The Gantt charts of the optimization results from the three models are presented
in Fig. 9.
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Fig. 9. Optimization comparison for a single component by different models

As shown in Fig. 9, the total production time of the original plan was 34.93 hours, while the proposed model reduced
it to 29.89 hours. TS-GA required 33.15 hours, and PSO-ACO required 32.11 hours. Among all operations, the proposed
model achieved the best improvement in operation N8, reducing the time from 16.24 hours in the original plan to 12.56
hours—a reduction of 3.68 hours or 22.66%. The least improvement was observed in operation N6, which was reduced
from 0.61 hours to 0.56 hours—a decrease of 0.05 hours or 8.20%. Overall, the proposed model shortened the total
production time by 5.04 hours, representing a 14.43% reduction. This highlighted the proposed model’s advantage in
optimizing the formwork process for a single prefabricated component. To demonstrate the model’s optimization
advantages from multiple perspectives, four additional component types were included. The experiments considered factors
such as waiting time for production resources, rework time within acceptable defect rates, and penalties for late delivery.
The results are shown in Fig. 10.
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Fig. 10. Multi-component optimization comparison by different models

As shown in Fig. 10(a), the original production sequence was 2, 3, 4, 5, 1. The distribution of operation durations was
relatively scattered, resulting in an extended total production time. This suggested inefficiencies and a lack of compact
scheduling. Fig. 10(b) illustrates that, after optimization using the proposed model, the operations became more compact,
with significantly reduced idle times. The new production sequence was adjusted to 3, 4, 5, 2, 1. For instance, the operation
sequence of component 3 became more continuous, allowing for better time utilization and reducing overall production
time. These results demonstrated that the optimized plan significantly improved scheduling efficiency and the arrangement
of operations. To verify whether the optimization results of the proposed model translated into improvements in cost and
labor hours, a complete order containing 17 prefabricated components was optimized using different models. The results
are shown in Table 2 and illustrated in Fig. 11.

As shown in Fig. 11(a), the production sequence of the 17 components was arranged as 8, 6, 7, 14, 3,9, 17, 4, 5, 12,
10, 16, 11, 1, 13, 15, 2. The production sequences optimized by TS-GA and the proposed model were noticeably different
from the original plan, while the sequence from PSO-ACO partially overlapped with the original. Fig. 11(b) reveals that
the original plan required 167.50 hours with a cost of 3026 yuan. TS-GA reduced the time to 136.50 hours and the cost to
2694 yuan. PSO-ACO reduced the time to 149.25 hours and the cost to 2815 yuan. The proposed model performed the
best, reducing labor hours to 121.75 hours—a 27.32% decrease—and cutting costs to 2313 yuan—a 23.56% reduction.
These comparisons showed that each model had different effects on labor hours, costs, and production sequences. The
proposed model demonstrated clear advantages in both time and cost savings.
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Fig. 11. Optimization comparison for the complete component order
5. Conclusion

With the rapid development of the prefabricated construction industry, optimizing component templates has become a key
step in improving the efficiency of construction projects. This study proposes a multi-population differential PSO approach
and develops a corresponding optimization model. Experimental results showed that the proposed multi-population
differential PSO reduced the test value of the Holder function to -18 within 8 iterations and then remained stable. In the 20
runs of the Rastrigin function test, the results ranged from 0.08 to 0.23, with an average of 0.16, all of which were better
than those of the DE-ABC and WOA-PSO algorithms. In the optimization of a single-component production task, the
proposed model reduced the total production time from 34.93 hours to 29.89 hours, a reduction of 5.04 hours or 14.43%.
When considering waiting times for production resources, rework within acceptable loss rates, and penalties for late
delivery, the proposed optimization approach improved production efficiency. For the full order of 17 components, the
proposed model reduced the total working hours from 167.50 hours to 121.75 hours, a 27.32% reduction, and decreased
the cost from 3026 yuan to 2313 yuan, a 23.56% reduction. Although the model improved task scheduling and enhanced
production efficiency, it remained relatively computationally complex when handling large-scale and complex projects. In
addition, limited attention was given to robustness and generalization. Future research can focus on addressing these issues
in depth.
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