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Abstract: The increasing adoption of prefabricated construction has made formwork a key factor that directly affects 
project cost, construction time, and quality. Traditional optimization methods, however, often struggle to address the 
variability of prefabricated components and the complexity of production environments. To overcome these limitations, 
this study develops an optimization model for prefabricated formwork by combining particle swarm optimization, genetic 
algorithm, and differential evolution within a three-swarm cooperative framework. The model considers objectives related 
to cost, construction period, and quality, and applies the analytic hierarchy process to support multi-criteria decision-
making. Experimental validation with real production data shows that the model reduced the production time of a single 
component from 34.93 hours to 29.89 hours. For a complete order of 17 components, total labor hours decreased by 27.32% 
and costs by 23.56%. These results confirm that the proposed approach not only improves optimization performance but 
also delivers practical value for scheduling and resource allocation in prefabricated construction projects. 
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1. Introduction 

The prefabricated building market is experiencing substantial growth, fueled by the advancement of “dual carbon” goals 
and the rise of construction industrialization. As the main component in prefabricated building production, formwork 
directly impacts cost, construction duration, and quality consistency (Fazeli et al., 2022). Data indicate that optimizing 
formwork can cut material waste by 15% to 20% and reduce construction time by 10% to 15%, making it a key factor in 
lowering costs and boosting efficiency in the industry (Han et al., 2023). Traditional optimization methods mainly depend 
on mathematical modeling and operations research to find the best solutions. However, due to varying component sizes 
and changing site conditions, overly simplified models often create gaps between theoretical outcomes and real-world 
practice. Particle Swarm Optimization (PSO) offers benefits such as a simple structure and quick convergence, making it 
effective for finding near-optimal solutions (Liu et al., 2022). Differential Evolution (DE), based on swarm intelligence, 
demonstrates strong global search ability and robustness (Bujok et al., 2023). Genetic Algorithm (GA), inspired by natural 
selection and genetic evolution, is suitable for large-scale, complex problems requiring global optimization (Alam and 
Arya, 2022). Nevertheless, each algorithm also faces limitations, such as a tendency to get stuck in local optima, limited 
local search accuracy, low computational efficiency, and premature convergence. To tackle these challenges, this study 
develops a three-swarm differential PSO algorithm that combines the strengths of all three methods. By improving data 
processing, clarifying problem constraints, and including diversity maintenance strategies, the model aims to optimize 
formwork for prefabricated building components. Its goal is to lower costs, shorten construction times, and improve quality. 
This study presents a new method by applying these three algorithms within a cooperative swarm structure, offering 
innovative solutions for formwork optimization in prefabricated construction. 

2. Related Works 

In the field of optimization algorithms, intelligent optimization methods have developed rapidly to address complex 
problems. Studies on multi-swarm Differential Evolution (DE) and Improved Particle Swarm Optimization (IPSO) have 
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been widely conducted by scholars from different countries. These methods have been applied in various domains. For 
example, Pirozmand et al. (2023) proposed a multi-adaptive learning PSO algorithm to address the impact of task 
scheduling on service quality in cloud computing environments. By defining two types of particles to reduce initial 
population diversity, their experiments showed that this method achieved better efficiency and accuracy in multi-objective 
tests. Yang et al. (2022) put forward a clustering-based competitive PSO algorithm to solve the problem of sparse 
optimization being overlooked in Pareto frontiers. This method combined PSO with competitive group optimizers to 
balance the search process. Nama and Saha (2022) proposed an improved multi-swarm Backtracking Search Algorithm to 
enhance global optimization performance. They introduced a new mutation strategy and adaptive parameter updates. 
Ankita and Sahana (2022) developed a balanced PSO algorithm to solve the challenge of effective application scheduling 
in dynamic grid environments. By optimizing scheduling, the algorithm reduced job execution time, improved resource 
utilization, and offered scalability. Experiments confirmed that it outperformed various deterministic and heuristic methods. 
Parouha and Verma (2022) addressed the limitation of traditional meta-heuristic algorithms that often fall into local optima. 
They introduced a hybrid algorithm based on DE and PSO, adding new strategies and parameter adjustments to balance 
global and local search capabilities. Results showed that this hybrid algorithm performed better than other similar 
approaches. 

Although extensive studies have been conducted on multi-swarm DE and IPSO, their application in the field of 
prefabricated buildings has remained limited. Some progress has been made using other approaches in this domain. For 
example, Du et al. (2023) proposed an improved biogeography-based optimization method to address the impact of 
ignoring participant behavior in the production of prefabricated components. Case studies demonstrated that this method 
optimized production planning and improved the ability to handle uncertainty, ultimately enhancing project efficiency. Zou 
and Feng (2023) developed a multi-objective simulation optimization method to overcome the negative effect of 
uncertainty on the performance of prefabricated construction. By refining activity logic to balance objectives, their 
experiments demonstrated significant improvements in construction time and cost, thereby supporting informed project 
decision-making. Almashaqbeh and El-Rayes (2022) developed an optimization model to reduce the high costs associated 
with the transportation and storage of prefabricated modules. The model was constructed by identifying variables, defining 
objective functions, and setting constraints. Zou and Feng (2023) developed an optimized prefabricated component library 
and simulation model to enhance efficiency and reduce costs in Building Information Modeling (BIM) for prefabricated 
buildings. Their experiments demonstrated that the method increased efficiency, lowered costs, and improved overall 
project performance. Xiao and Bhola (2022) carried out collaborative design using Building Information Modeling to 
address its limitations in the design of prefabricated buildings. 

Although existing research has made progress in optimisation algorithms and certain aspects of prefabricated 
construction, most work either emphasizes general algorithmic innovation or focuses on localized issues such as 
transportation, storage, or component libraries. Systematic research remains relatively scarce concerning the optimisation 
of prefabricated formwork, which directly impacts production costs, construction schedules, and quality. Furthermore, 
existing methods exhibit limited robustness testing across diverse production scenarios and offer insufficient guidance for 
construction management practices. Consequently, a significant research gap persists in developing an integrated, 
application-oriented framework for optimising prefabricated formwork. To address this deficiency, this study proposes a 
tri-population collaborative optimisation model integrating PSO, GA, and DE algorithms, supplemented by the Analytic 
Hierarchy Process (AHP) for multi-objective decision-making. Unlike previous studies, this research explicitly integrates 
computational intelligence methods with scheduling and resource allocation problems in prefabricated construction 
processes. While achieving methodological innovation, it further emphasises its application value in engineering 
management practice. 

3. Model Construction for Template Optimization of Prefabricated Components

3.1. Design of Three-Swarm Differential PSO Combined with GA and DE

Prefabricated component templates must be optimized in terms of cost control and production cycle to enhance the 
production efficiency and quality of prefabricated buildings (Pereira et al., 2022). This study integrates GA and DE with 
PSO through parallel and cooperative operations to computationally solve the above problem. PSO shares information 
among particles in the swarm, enabling different individuals to explore various areas in the solution space to find the 
optimal solution by continuously updating particle positions and velocities (Demir and Sahin 2023). The velocity update 
equation is shown in Eq. (1). 

dim dim 1 1 dim dim 2 2 dim dim( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i i i i ik k c r pbest k x k c r gbest k x kν ων+ = + − + −    (1) 

In Eq. (1), k  denotes the number of iterations. dim ( )i kν  is the velocity of particle i  in the dimensional space. x  is

the position of the particle. ω  is the inertia weight. 1c  and 2c  are the cognitive and social learning factors, respectively.
r  is a random number between 0 and 1. gbest  represents the personal best, and pbest  represents the global best. The
position update equation is shown in Eq. (2). 

dim dim dim( 1) ( ) ( 1)i i ix k x k kν+ = + +    (2) 

In Eq. (2), k  is the number of iterations. dim ( )ix k  is the current position of particle i  in the dimensional space. ν  is
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the particle's velocity. In traditional PSO, the inertia weight is usually constant, limiting the ability to adapt velocity over 
iterations. However, in practice, the inertia weight should vary with iterations. A nonlinear inertia weighting method 
accelerates the reduction of speed in the early and middle stages, improving global search performance. The nonlinear 
inertia weight is calculated by Eq. (3). 

max max min max( ) ln(1 / )iter iterω ω ω ω= − − +   (3) 

In Eq. (3), maxω  and minω represent the maximum and minimum values of the inertia weight, respectively. iter  is

the current iteration number, and maxiter  is the maximum iteration number. The learning factors affect the global 
optimization ability of PSO. Instead of using fixed values, the learning factors are optimized as shown in Eq. (4). 

1 1 1 1
max

2 2 2 2
max

( )

( )

s s e

s s e

iterc c c c
iter

iterc c c c
iter

 = − − ×

 = − − ×
         (4) 

In Eq. (4), 1sc  and 1c  are the initial values of 2sc  and 2c , while 1ec  and 2ec  are their final values, respectively. 
Learning factors that vary with iterations enhance global search ability and speed, making it easier to achieve the global 
optimum through fine local search. The flowchart of the IPSO is shown in Fig. 1. 
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Fig. 1. Schematic diagram of the workflow of the IPSO algorithm 

As shown in Fig. 1, the process begins by calculating the fitness value, followed by the initialization of the swarm and 
particle velocities. It then searches for the personal and global best positions. The particle velocity and position are updated 
using the improved equations. Fitness values are then recalculated. If the termination condition is met, the optimal solution 
is output. Otherwise, the process continues to iterate. Although IPSO offers several advantages, running it independently 
may result in premature convergence, which lowers accuracy and limits particle diversity (Parouha and Verma, 2022; Bujok 
et al., 2023). DE addresses this issue by evolving solutions through mutation, crossover, and selection. It is simple in 
principle, converges quickly, and offers strong robustness (Tiwari et al., 2024). Therefore, DE is integrated to generate 
better individuals using its mutation mechanism. The mutation operation is shown in Eq. (5). 

1 2 3
( )t t t

ir b b bx x xθ η= + × +
    (5) 

In Eq. (5), b  denotes a random and distinct function. i  represents the target individual. t  is the current iteration, and
r  is the dimensional index. x  is the target vector, and θ  is the mutant vector's value in the same dimension, i.e., the new
mutant individual. η  is the scaling factor. The crossover operation is shown in Eq. (6).

( )1 ( ) ( )ir C ir C irP rand S rand S xθ= − × + ×
  (6) 

In Eq. (6), P  is the crossover vector, or the new offspring. rand  is the function used to generate a random number.
The comparison of the second-generation fitness values is shown in Eq. (7). 

1 , ( )ir i it
i t

i

P P F X
X

X
+

≤= 
         (7) 

In Eq. (7), 
t
iX  is the position vector before iteration, and ( )iF X  is the fitness function value of the target vector. The 

DE algorithm flowchart is shown in Fig. 2. 
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Fig. 2. Schematic diagram of DE algorithm operation process 

As shown in Fig. 2, the process begins by initializing individuals and calculating their fitness values. New individuals 
are generated through mutation and crossover. Their fitness is evaluated, and the process iterates until the termination 
condition is met, after which the optimal solution is output. When IPSO stagnates, DE helps it escape from local optima. 
However, combining the two still faces the challenge of a single search strategy. In complex, high-dimensional problems, 
performance may degrade, convergence may slow, and the algorithm may still fall into local optima. To address this, GA 
is introduced to complement the deficiencies by simulating natural selection, crossover, and mutation to iteratively explore 
potential solutions. In the selection phase, the probability of an individual being selected for reproduction is proportional 
to its fitness. The probability calculation is shown in Eq. (8). 

1

( )
( )

i
i n

jj

f ap
f a

=

=
∑                                                                           (8) 

In Eq. (8), a  represents a vector encoding the individual's features. p  is the probability of being selected. f  is the 
fitness value. n  is the total number of individuals. i  and j  are individuals in n . In the crossover phase, selected 
individuals generate offspring through crossover, and the resulting offspring are represented in Eq. (9). 

1 2 ( 1)' ( , ,..., , ,..., )i i ik j k jna a a a a a+=
                                                        (9) 

In Eq. (9), 'a  represents the offspring of a . The DE algorithm modifies certain genes of newborn individuals with a 
small probability, thereby introducing mutations and increasing the diversity of the population. The mutation operation is 
shown in Eq. (10). 

'' ,nk nka a withprobabilityδ µ= +                                                    (10) 

In Eq. (10), 
''a  is the mutated gene. µ  is the mutation rate. δ  is a small random change. Repeating these steps across 

generations enables GA to gradually improve the quality of solutions and approach the optimal. However, GA may 
encounter difficulties such as a large search space and local optima in complex problems. ANN has a strong learning ability, 
and its rapid learning feature can guide GA to enhance search efficiency (Stojanović et al., 2022). The operation flow chart 
of ANN-GA is shown in Fig. 3. 
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Fig. 3. ANN-GA operation flow chart 

As shown in Fig. 3, the process begins with random sampling to select test samples, which are then input into the ANN 
prediction module for training. Next, the initialization module is created, and a tolerance analysis is performed. If the 
tolerance meets the requirements, the final ANN module is generated. Otherwise, weights and thresholds are adjusted. The 
initial parameters of ANN-GA are set to generate the optimal prediction module. Based on the defined constraints and 
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optimization goals, the fitness value is calculated. If the termination condition is met, the result is output. If not, the selected 
individuals undergo crossover and mutation to create a new population, returning to the parameter setting step for the next 
iteration. These three algorithms run in parallel and work together. IPSO provides an initially optimized region for DE and 
ANN-GA, narrowing the search scope. DE continuously generates diverse individuals during the search process, providing 
enriched material for ANN-GA. ANN-GA further refines the solutions produced by IPSO and DE, selecting better results. 
Their cooperation enhances global search capabilities, local refinement, and multi-objective handling. 

3.2. Development of the Template Optimization Model for Prefabricated Components 

After developing the three-swarm differential PSO, this study builds an optimization model for prefabricated building 
component formworks based on the algorithm and practical requirements. The optimization process needs to consider cost, 
construction period, and quality. The cost includes materials, manufacturing, and transportation. The cost objective function 
sums all items based on material types and unit prices. The construction period is calculated by summing the time for each 
stage from design to installation. The quality is measured by accuracy and strength. These three objectives are shown in 
Eq. (11). 

1 1 1

1

1 2
1

m f t

T

n n n
C i i j j k ki j k

n
T uu

Q

F p q r h s l

F t

F S
E

ω ω

= = =

=


= + +

 =

 = +


∑ ∑ ∑
∑

  (11) 

In Eq. (11), CF  represents the cost objective function. ip  is the unit price of material, and iq  is the quantity. jr
 is the

unit cost of each manufacturing step, and jh
 is the workload. ks  is the unit cost of transportation, and kl  is the

transportation distance. mn , fn
, and tn  are the number of material types, process steps, and transportation segments,

respectively. TF  represents the construction period objective function. ut  is the time of each stage, and Tn  is the number

of stages. QF
 represents the quality objective function. E  and S  are the indicators of accuracy, error and strength. 1ω  

and 2ω  are the corresponding weight coefficients. In formwork optimization, population diversity affects whether the 
algorithm can find high-quality solutions (Kunakh et al., 2023). This matches the use of the three-swarm differential PSO. 
Before running the algorithm, this study introduces the average Euclidean distance among individuals in the population as 
the diversity evaluation index. The Euclidean distance and its average expression are shown in Eq. (12). 

2
1

1

1 1

( )

2
( 1)

n
ij ik jkk

N N
iji j i

d x x

D d
N N

=

−

= = +

 = −


=
−

∑

∑ ∑
  (12) 

In Eq. (12), N  is the number of individuals. jkx
is the value of the individual j  on the k -th parameter. ijd

 is the
Euclidean distance between individuals, and D  is the average Euclidean distance. In multi-dimensional space, population
diversity is measured using individual distances. A lower average indicates insufficient diversity. Some individuals are 
reinitialized by randomly resetting parameters or adding small random disturbances. The evaluation process is shown in 
Fig. 4. 
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Fig. 4. Schematic diagram of the diversity assessment process 
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As shown in Fig. 4, after initializing the algorithm, it calculates the average distance between individuals to assess 
diversity. If the diversity is sufficient, the algorithm proceeds with iterative optimization. Otherwise, it introduces random 
disturbances and reinitializes some parameters. After improving diversity, the algorithm performs parallel computation 
using the three-swarm differential PSO. The geometric mean of the results is used to improve stability and adaptability. In 
the cooperation stage, the algorithm exchanges top-performing individuals based on fitness ranking to enhance optimization. 
However, the objectives of formwork optimization may conflict. This study applies the AHP to support decision-making. 
The AHP structure is shown in Fig. 5. 
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Fig. 5. Schematic diagram of the mechanism of AHP 

As shown in Fig. 5, AHP first divides the multi-objective problem into a goal layer, a criteria layer, and an alternatives 
layer. Then it constructs a judgment matrix to compare the importance of each element and determine its weight. Finally, 
it calculates the comprehensive score of each candidate under different objectives, ranks them, and selects the optimal one 
that meets practical needs. This method provides scientific and rational decision-making for real production and helps to 
find better solutions in multi-objective optimization. By combining the objective functions, diversity evaluation, AHP, and 
the proposed three-swarm differential PSO, the study builds an optimization model for formwork. The complete process is 
shown in Fig. 6. 
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Fig. 6. Optimization process of prefabricated building formwork 

As shown in Fig. 6, the process begins by defining objectives and constraints for cost, time, and quality, followed by 
data collection and cleaning. After parameter setting and population initialization, a diversity maintenance mechanism is 
applied through random disturbances or reinitialization. The algorithm then evaluates fitness, identifies the global best, and 
checks termination conditions. If unmet, a cooperation strategy is executed until convergence. The three-swarm differential 
PSO operates in parallel, increments the generation count, and repeats the process. Once the termination condition is 
satisfied, the algorithm exchanges top-performing individuals among swarms. It then applies AHP to process the results 
and outputs the optimized formwork solution. 

4. Experimental Analysis of the Proposed Prefabricated Building Model

4.1. Experimental Setup

To ensure the fairness and validity of the proposed optimization model, this study designed the following experimental 
setup. Firstly, during the algorithm performance validation phase, the Holder function, Rastrigin function, and Zitzler-Deb-
Thiele (ZDT) test set were selected as benchmark functions to evaluate the convergence and accuracy of single-objective 
and multi-objective optimization. Secondly, during the practical application validation phase, production data from a 
precast component factory were collected through field surveys and structured interviews. This included key indicators 
such as process duration, material consumption, and defect rates. The specific details of the experimental platform's 
software and hardware environment are presented in Table 1. 



Journal of Engineering, Project, and Production Management, 2026, 16(1), 2025-152 

7 
 

Table 1. Experimental hardware and software environment configuration 

Category Project Configuration notes 

Hardware environment 

Processor Intel Core i7-12700H, 2.3 GHz, 14cores  
Memory 16 GB DDR4 
Storage 512 GB SSD 
Graphics card NVIDIA RTX 3060, 6 GB 

Software environment 
Operating system Windows 10 (64 bites) / Ubuntu 20.04 
Programming environment Python 3.6 / MATLAB R2021a 
Libraries/Toolkits NumPy, SciPy, Matplotlib, OpenCV 

4.2. Performance Verification of the Improved Three-Swarm Differential PSO 

To evaluate the performance of the improved multi-population differential PSO, the proposed algorithm was compared 
with two hybrid algorithms: Whale Optimization Algorithm combined with PSO (WOA-PSO) and DE combined with 
Artificial Bee Colony (DE-ABC). The three algorithms were tested on the Rastrigin and Holder benchmark functions. The 
Rastrigin function was executed 20 times, and the results are shown in Fig. 7. 
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Fig. 7. Performance comparison of test functions 

As shown in Fig. 7(a), in the Holder function test, the proposed algorithm achieved a rapid decline in function values 
as the number of iterations increased, reaching -18 at the 8th iteration and then stabilizing. DE-ABC showed a decrease 
from -2 to -10.5 by the 11th iteration and then stabilized. According to Fig. 7(b), during the 20 runs of the Rastrigin function 
test, the function values of the proposed algorithm ranged from 0.08 to 0.23, with an average of 0.16. These results indicated 
that the proposed algorithm achieved a good balance between computational efficiency and accuracy, while also 
demonstrating faster convergence. To analyze the algorithm’s capability in solving single-objective problems, a series of 
standard test functions and the ZDT benchmark set were selected for further evaluation. The specific expressions of the 
functions are shown in Table 2. 
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Table 2. Test functions used in the experiment (continued) 
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value 
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Function 
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Variable 
dimension 

1 1
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As presented in Table 2, F1 consisted of a combination of power terms, F2 the Ackley function, F3 involved fractional 
and power operations, and F4 combined trigonometric and exponential components. ZDT1 and ZDT2 were two sets of 
multi-objective functions. Through this diverse set of functions, the study evaluated the proposed algorithm’s performance 
in solving both convex and non-convex functions in multi-objective optimization scenarios. The optimization results are 
displayed in Fig. 8. 
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Fig. 8. Optimization curves of different objective functions 

As shown in Fig. 8(a), the initial fitness values of functions F1 to F4 varied in the single-objective tests. A noticeable 
downward trend emerged after 5, 4, 6, and 3 generations, respectively, eventually approaching zero or a stable value. Fig. 
8(b) shows that, in the multi-objective tests, the proposed algorithm generated tightly clustered solutions when solving 
ZDT1 and ZDT2, which have convex and non-convex characteristics, respectively. These findings demonstrated that the 
proposed algorithm achieved accurate convergence and evenly distributed solutions when handling functions with different 
features, delivering strong performance in both single-objective and multi-objective optimization. 

4.3. Performance Verification of the Component Optimization Model 

After validating the performance of the proposed algorithm, further tests were conducted to assess its practical application 
in optimizing the formwork scheduling model for prefabricated components in construction. Experiments were conducted 
using MATLAB R2021a on a Windows 10 system with 16GB RAM and an Intel Core i7-12700H CPU. Prefabricated 
component order data were collected from a local manufacturer through field visits and interviews. The proposed model 
was compared with two hybrid algorithms: PSO combined with Ant Colony Optimization (PSO-ACO) and Tabu Search 
combined with GA (TS-GA). One prefabricated component was selected; the average processing duration was calculated 
for multiple repetitions of each operation. Operations N1 to N9 represented stages such as initial preparation, rebar 
processing, and embedded part production. The Gantt charts of the optimization results from the three models are presented 
in Fig. 9. 
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Fig. 9. Optimization comparison for a single component by different models 

As shown in Fig. 9, the total production time of the original plan was 34.93 hours, while the proposed model reduced 
it to 29.89 hours. TS-GA required 33.15 hours, and PSO-ACO required 32.11 hours. Among all operations, the proposed 
model achieved the best improvement in operation N8, reducing the time from 16.24 hours in the original plan to 12.56 
hours—a reduction of 3.68 hours or 22.66%. The least improvement was observed in operation N6, which was reduced 
from 0.61 hours to 0.56 hours—a decrease of 0.05 hours or 8.20%. Overall, the proposed model shortened the total 
production time by 5.04 hours, representing a 14.43% reduction. This highlighted the proposed model’s advantage in 
optimizing the formwork process for a single prefabricated component. To demonstrate the model’s optimization 
advantages from multiple perspectives, four additional component types were included. The experiments considered factors 
such as waiting time for production resources, rework time within acceptable defect rates, and penalties for late delivery. 
The results are shown in Fig. 10. 
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Fig. 10. Multi-component optimization comparison by different models 

As shown in Fig. 10(a), the original production sequence was 2, 3, 4, 5, 1. The distribution of operation durations was 
relatively scattered, resulting in an extended total production time. This suggested inefficiencies and a lack of compact 
scheduling. Fig. 10(b) illustrates that, after optimization using the proposed model, the operations became more compact, 
with significantly reduced idle times. The new production sequence was adjusted to 3, 4, 5, 2, 1. For instance, the operation 
sequence of component 3 became more continuous, allowing for better time utilization and reducing overall production 
time. These results demonstrated that the optimized plan significantly improved scheduling efficiency and the arrangement 
of operations. To verify whether the optimization results of the proposed model translated into improvements in cost and 
labor hours, a complete order containing 17 prefabricated components was optimized using different models. The results 
are shown in Table 2 and illustrated in Fig. 11. 

As shown in Fig. 11(a), the production sequence of the 17 components was arranged as 8, 6, 7, 14, 3, 9, 17, 4, 5, 12, 
10, 16, 11, 1, 13, 15, 2. The production sequences optimized by TS-GA and the proposed model were noticeably different 
from the original plan, while the sequence from PSO-ACO partially overlapped with the original. Fig. 11(b) reveals that 
the original plan required 167.50 hours with a cost of 3026 yuan. TS-GA reduced the time to 136.50 hours and the cost to 
2694 yuan. PSO-ACO reduced the time to 149.25 hours and the cost to 2815 yuan. The proposed model performed the 
best, reducing labor hours to 121.75 hours—a 27.32% decrease—and cutting costs to 2313 yuan—a 23.56% reduction. 
These comparisons showed that each model had different effects on labor hours, costs, and production sequences. The 
proposed model demonstrated clear advantages in both time and cost savings. 
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5. Conclusion

With the rapid development of the prefabricated construction industry, optimizing component templates has become a key 
step in improving the efficiency of construction projects. This study proposes a multi-population differential PSO approach 
and develops a corresponding optimization model. Experimental results showed that the proposed multi-population 
differential PSO reduced the test value of the Holder function to -18 within 8 iterations and then remained stable. In the 20 
runs of the Rastrigin function test, the results ranged from 0.08 to 0.23, with an average of 0.16, all of which were better 
than those of the DE-ABC and WOA-PSO algorithms. In the optimization of a single-component production task, the 
proposed model reduced the total production time from 34.93 hours to 29.89 hours, a reduction of 5.04 hours or 14.43%. 
When considering waiting times for production resources, rework within acceptable loss rates, and penalties for late 
delivery, the proposed optimization approach improved production efficiency. For the full order of 17 components, the 
proposed model reduced the total working hours from 167.50 hours to 121.75 hours, a 27.32% reduction, and decreased 
the cost from 3026 yuan to 2313 yuan, a 23.56% reduction. Although the model improved task scheduling and enhanced 
production efficiency, it remained relatively computationally complex when handling large-scale and complex projects. In 
addition, limited attention was given to robustness and generalization. Future research can focus on addressing these issues 
in depth. 
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