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_________________________________________________________________________________________________ 

Abstract: Although construction is one of the oldest sectors of the global economy, the digital innovation and application 
of artificial intelligence (AI) in the industry are still insignificant. For the past several years, however, with rapid 
advancements in supporting technologies and computing power, the construction industry has made several strides in areas 
such as digitalization, data-driven design and planning, and automation. As the industry is in the process of adopting and 
customizing AI-powered tools and technologies in its daily workflows to improve safety, new opportunities are being 
created to enable human workers and stakeholders to seamlessly collaborate with AI in various aspects of project design, 
planning, construction, operation, and maintenance. The promise of human-AI collaboration in construction has, in turn, 
given rise to new research endeavors that focus on adaptability, usability, and expandability rather than mere algorithmic 
development. Prior to implementing any new AI technology in construction, users need to understand its impact on the 
human worker. Despite several systematic literature reviews on the applications of AI in construction, to date, there is 
limited investigation into the workers’ experience during such transition from traditional to AI-driven work. In this study, 
a systematic literature review on AI in the construction industry is conducted through the lens of how such implementation 
might affect human workers’ performance, behavior, and experience. The paper identifies common human factors involved 
in introducing AI and discusses the connection between those factors and potential AI applications in the industry. Finally, 
future directions for human-AI partnership in construction are outlined. 
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1. Introduction 

With more than 8 million (Statista Research Department, 2023) employees nationwide, construction is one of the key 
contributors to the U.S. economy, creating nearly $7 trillion worth of built environment and infrastructure projects annually 
(Simonson, 2021). Despite this large footprint, unlike transportation, manufacturing, healthcare, and aviation industries, 
digital innovations and applications enabled by artificial intelligence (AI) in the construction sector are still in their infancy 
(Blanco et al., 2018b; Rao, 2022; Sands and Bakthavachalam, 2019; Walch, 2020). The experience and evidence from other 
domains point to the direction that AI has the potential to contribute to efficiency throughout the construction project lifecycle. 
However, to date, most existing AI-related research and prototypes tackle narrowly defined problems in pre-
planning/scheduling, construction safety, and productivity, leaving out critical aspects of such implementations on the 
workers, a topic that is currently under investigation in other domains under the general theme of human-AI interaction. 

Construction work consists of several physically demanding trades. About 40% of U.S. construction workers regularly 
engage in tasks that put their bodies under severe fatigue, gradually causing negative consequences concerning safety, 
performance, and general well-being (Jebelli et al., 2019b; Ng and Tang, 2010). This fatigue also increases the likelihood of 
accidents due to human fault, work-related musculoskeletal disorders (WMSDs), and productivity loss (Hallowell, 2010a, 
2010b; Sluiter, 2006; Toole, 2005). Some of the major applications of AI involve machine learning (ML) or deep learning 
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(DL) based detection, prediction, and assessment solutions for construction safety powered by one or more technologies 
such as wearable sensors, field sensors, cameras, drones, virtual reality (VR), and computer vision (CV) (Emaminejad and 
Akhavian, 2022; Guo et al., 2021; Jebelli et al., 2019a, 2019b; N. Kim et al., 2021; Mostafa and Hegazy, 2021; Nath et al., 
2020; Sakib et al., 2021a; Wang et al., 2019). In addition to human safety being a pivotal issue in the construction industry, 
previous literature has also cited a lack of work in areas related to trust in AI and robotics, particularly concerning issues 
such as explainability, reliability, robustness, performance, and safety of technology integration (Emaminejad and Akhavian, 
2022; Simonson, 2021). 

From experience in other sectors, such as manufacturing and transportation, AI is also expected to improve human work 
conditions and performance in construction. However, considering the dynamic and fragmented nature of the construction 
industry, the positive impact of AI on human workers in other industries may only be partially transferable to the construction 
domain. As large-scale use cases of AI are still evolving in the construction industry, now is the right time to study how AI 
can positively (or negatively) impact human workers and plan for future AI implementation opportunities. The existing 
literature contains some work on the impact of AI on different construction trades, but it still lacks a comprehensive 
systematic review. This paper focuses on some of the current applications of AI in construction from the perspective of work 
performance and usability improvement. 

2. Literature Review 

2.1. AI in Construction 

While worker productivity has been increasing in almost all major industries in the past few decades, this vital metric has 
shown only a slight improvement in the construction industry (Kristensen, 2011; Schia, 2019b). Previous surveys show that 
construction is the second least digitalized global industry after agriculture and hunting (Agarwal et al., 2016; Schia, 2019a). 
While the application of AI-powered technologies in construction is currently very limited, this limitation can turn into an 
opportunity that leads to construction’s next frontier for cost reduction, risk management, and productivity improvement 
(Blanco et al., 2018a; Hagras, 2018) as research shows that AI-based systems can use historical data to improve workflow 
and productivity on-site (Schuh et al., 2017). 

Digital technologies can be critical elements for improving construction productivity (Alaloul et al., 2020; M. Wang et 
al., 2020). While AI has been so far used to address issues related to inefficiency, safety hazards, and workforce in healthcare, 
automation, and manufacturing industries, the construction industry still needs more attention (Emaminejad and Akhavian, 
2022; Hallowell, 2010b; Pagliarini and Lund, 2017; Pillai et al., 2021). A recent study pointed to the lack of complete and 
accessible information as a significant barrier to adopting BIM and AI technologies in the construction industry (Sacks et 
al., 2020). Similarly, other key barriers to AI adoption include the lack of understanding of how resulting changes affect 
human workers. Previous systematic literature reviews in this area have discussed the application and influence of AI tools 
in architecture, engineering, and construction (Manzoor et al., 2021; Momade et al., 2021) particularly in fall detection (Z. 
Wang et al., 2020), image-based construction applications and solutions (Mostafa and Hegazy, 2021), automated activity 
recognition (Sherafat et al., 2020), wearable sensing (Ahn et al., 2019), and trustworthiness of AI in construction 
(Emaminejad and Akhavian, 2022). There is, however, a clear gap in these studies related to issues surrounding the human-
AI interaction in construction. 

2.2. Human-AI Interaction 

Recent advancements in automation have enabled faster and more consistent responses to dangerous situations (Abbass, 
2019; Schia, 2019a). While humans lack the extraordinary capability of extensive data analysis and quick access to 
information and knowledge, today’s AI-based technologies lack creativity, ethical considerations (as a result of limited data), 
and visionary thinking (Carpenter et al., 2018). Therefore, a collaboration between humans and AI can leverage the strengths 
of both worlds and lead to technological solutions that are creative, ethical, and inclusive (McCaffrey, 2018). 

 

 

Fig. 1. The five M’s framework (Harris and Harris, 2004) 



Journal of Engineering, Project, and Production Management, 2025, 15(1), 0006 

3 

In the meantime, recent developments in AI are more focused on usability, interpretability, and efficacy for the user 
instead of developing pure computational algorithms (Zhu et al., 2018). Fig. 1 is adopted from Harris et al. (2004) and 
represents how any given field operation/task is not merely a collaboration between humans and machines but is also affected 
by the role of organizational management. As with any successful human-human partnership, a successful human-AI 
collaboration also requires defined tasks and responsibilities (Schia, 2019a). Intensive interaction is needed for this kind of 
collaboration. A significant factor is that underlying data structures should be stable by both humans and AI (Zhu et al., 
2018). Additionally, it is critical to design effective methods of establishing and calibrating trust between humans and AI by 
investigating how elements of AI design, such as system interface, functionality, level of automation, and explainability, can 
contribute to the level of user trust in technology (Hagras, 2018; Oksanen et al., 2020). 

3. Systematic Review Method 

This study performed a systematic literature review (Lockwood and Oh, 2017) by carefully selecting and thoroughly 
reviewing the most relevant publications using two different search engines, namely Engineering Village and Web of Science. 
The Engineering Village search internally includes four databases, Compendex, Inspec, GEOBASE, and GeoRef, while Web 
of Science covers the Elsevier database. Table 1 lists the Boolean search strings applied to find the relevant literature. These 
strings are derived from four initially selected main search domains of artificial intelligence, human workers, and human 
factors in the construction industry. 

Table 1. Boolean search string for literature search 

Search 
domain 

Boolean search string 

Artificial 
intelligence 

“ai” OR “artificial intelligence” OR “machine learning” OR “deep learning” 

Construction “Construction*” 

Human “human*” OR “worker*” OR “labor*” OR “operator*” 

Human 
factors 

factor*” OR “performance*” OR “behavior*” OR “experience*” OR “stress*” OR “ergonomic*” OR 
“emotion*” OR “capability*” OR “fatigue*” OR “productivity*” OR “safety*” OR “teamwork*” 

 

After combining the search results from two different databases and removing all duplicates, a total of 1,965 publications 
are selected for title and abstract screening. Title and abstract screening eliminate 1,534 publications, leaving 431 for full-
text study assessment. Following the full-text study assessment, studies that do not include all aspects of the literature review 
outline (i.e., AI, construction, human workers, human factors) are removed, leading to a total of 34 publications for data 
extraction. Out of the 34 pieces of literature, three were found to be review papers. This entire selection process is 
administered on the systematic review platform provided by Covidence (https://www.covidence.org). Fig. 2 shows the 
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) diagram for the screening stage after 
exporting from the databases. 

Fig. 2. PRISMA diagram for literature selection 

4. Findings of the Literature Review 

One of the primary motivations for implementing AI in construction is to support human workers by increasing their safety, 
performance, and productivity. Tables 2 and 3 summarize the full-text analysis of the reviewed literature in this chapter. 
From a thorough review of these papers, the main application of AI in construction, as related to human factors, can be 
grouped into two main categories: (1) workers’ safety, performance, and productivity (Table 2) and (2) workers’ health 
(Table 3).   

•2,556 studies imported for screening
•591 duplicates removed
•1,965 studies screened

Search in database

•1,534 studies irrelivent
•431 studies for full text review

Title and abstract screening

•395 studies does not include all search domain
•34 studies included for data extraction

Full text review

•31 are individual research papers
•3 are review papers

Data extraction
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Table 2. Literature related to workers’ safety, performance, and productivity 

References Human Factor Application 
Artificial 

Intelligence 
Data Collection 

Methods 
Accuracy 

(Cho et al., 2018) 

Safety 

Monitoring 
scaffolding 
structures 

SVM Strain sensor 97.66% 

(Sakhakarmi et 
al., 2019) 

SVM 
Computer 
simulation 

96% 

(Wang et al., 
2019) 

Workers risk 
recognition 

CNN and 
Bayesian-
network 

Camera 95% 

(Cai et al., 2020) 
Worker 

trajectory 
prediction 

Context-
augmented 

LSTM 
Camera 

FDE = 8.51 
pixels 

(Siddula et al., 
2016) 

Measurement of 
safety 

performance 
SVM Crowdsourcing 97.50% 

(Y.-C. Lee et al., 
2020) 

Hazardous 
activity 

identification 
KNN Sound recorder 100% 

(Nath et al., 
2020) 

PPE detection CNN Camera mAP = 72.3% 

(K. Kim et al., 
2021) 

Workers and 
equipment 
detection 

CNN 
Computer 
simulation 

F1 score = 0.48 

(Golparvar-Fard 
et al., 2013) 

Safety, 
productivity 

Equipment 
activity 

recognition 

SVM Camera 

Average 
accuracy for 
Excavator= 
86.33% and 

Dump truck= 
98.33% 

(Akhavian and 
Behzadan, 2015) 

ANN 
Mobile phone, 

RFID smart tags 

Classification 
accuracy up to 

98.59% 

(Akhavian and 
Behzadan, 2016) 

Worker’s activity 
recognition 

ANN, Decision 
Tree (DT), KNN, 

Linear 
Regression (LR), 

and SVM 

Mobile Phone-
based Sensors 

Upto 97% for 
user-dependent 

and 96% for 
user-independent 

(Kim and Cho, 
2020) 

LSTM 
Wearables: 

Motion sensors 
94.73% 

(Ogunseiju et al., 
2021) 

KNN and CNN 
Wearables: Wrist 

wearable IMU 
KNN = 99.8%, 
CNN = 97.1% 

(Roberts et al., 
2020) 

Safety, 
performance 

Worker’s activity 
recognition 

CNN 
3rd party video 

data 
78.5% 

(Bangaru et al., 
2020) 

ANN Wearables EMG 80% 

(Bangaru et al., 
2021) 

ANN 
Wearables EMG 
and inertial IMU 

94% 

(Ebrahimi et al., 
2021) 

Productivity 
Worker’s 

productivity 
prediction 

RF 
Survey-based 

field data 
RMSE = 0.137 

 

4.1. Workers’ Safety, Performance, and Productivity 

Safety, performance, and productivity are significant concerns in any construction job. The literature on safety factors for 
human workers is generally related to either equipment activity detection or equipment-worker activity detection, which 
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primarily supports the goal of eliminating physical collisions. Due to the risk involved in the scaffolding job, Cho et al. 
(2018) and Sakhakarmi et al. (2019) used support vector machine (SVM) and scaffolding structures’ strain data to detect 
scaffolding structural failures during construction work. Wang et al. (2019), Cai et al. (2020) and Siddula et al. (2016) used 
construction photos to measure risk and safety performance. Wang et al. (2019) used crowdsourced labeled data to detect 
complex construction scenes and enable vision-based workplace safety. Cai et al. (2020) used sequence-to-sequence data 
along with a long short-term memory (LSTM) model and wearable to predict workers’ trajectories multiple steps ahead. 

Table 3. Literature related to workers’ mental and physical health 

References 
Human 
Factor 

Application 
Artificial 

Intelligence 
Data Collection 

Methods 
Accuracy 

(Aryal et al., 
2017) 

Fatigue Fatigue detection 
Boosted tree 

classifiers 

HR monitor, EEG 
sensor, and 
temperature 

sensors 

82.6% 

(Nath et al., 
2018) 

Ergonomic 
risk 

WMSDs 

SVM 
Smartphone-based 

sensors 
90.2% 

(Akanmu et al., 
2020) 

RL 
Wearable IMU 

sensors, HTC 
Vive trackers 

N/A 

(Zhao and 
Obonyo, 2020) 

CNN-LSTM 
Wearable IMU 

sensors 
F1 Score personalized 

model = 0.911 

(Mudiyanselage 
et al., 2021) 

DT, SVM, 
KNN 

Surface EMG 99.35% 

(Zhao and 
Obonyo, 2021) 

Incremental 
CLN 

Camera 
F1 Score = 0.87 

(personalized), 0.84 
(generalized) 

(H. Lee et al., 
2020) 

Stress 

CNN-LSTM 
Network 

Wearable IMU 
sensors 

Load-carrying weight 
= 92.46% and 

Posture classifications 
= 96.33% 

(Jebelli et al., 
2018) Occupational 

stress 

Gaussian 
SVM 

EEG 80.32% 

(Jebelli et al., 
2019a) 

Gaussian 
SVM 

Wrist wearable 
biosensors 

84.48% 

(Sakib et al., 
2021b) 

Stress Performance, 
MWL, and stress 

detection 

Machine 
Learning 

Wrist and chest 
wearable 

biosensors 

In 83% of cases 

(Jebelli et al., 
2019a) 

Physical 
demand 

Physical 
demands 

Gaussian 
SVM 

Wrist wearable 
biosensors 

90% 

(Tang and 
Golparvar-Fard, 

2021) 

Worker-level 
severity 

CNN Camera 86.6% 

(N. Kim et al., 
2021) 

Worker’s 
inattentiveness 

Struck-by 
hazards 

SVM Wearable IMU 
sensors, HTC 

Vive eye tracker 

Unweighted 
average recall (UAR) 

= 0.722 

(Lee et al., 2021) Workers 
perceived risk 

Workers' safe or 
unsafe behaviors 

Gaussian 
SVM 

Wrist wearable 
biosensors 

81.2% 

 

In addition, Siddula et al. (2016) also used construction images to see rooftop work to ensure proper safety standards 
during the construction process. Lee et al. (2020) used a completely different data modality by working on an audio-based 
safety detection system to identify construction safety hazards and accidents. Both Nath et al. (2020) and Kim et al. (2021) 
used convolutional neural network (CNN) models to implement visual recognition of workers and equipment on the job site 
and consequently detect workers’ personal protective equipment (PPE). 

Generally, identifying safety and productivity comes as a package while using AI for equipment/worker activity 
recognition. Golparvar-Fard et al. (2013), and Akhavian and Behzadan (2015) detected construction equipment activities 
using AI. In particular, Golparvar-Fard et al. (2013) used video data with an SVM model to achieve activity recognition up 
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to 98.33%, while Akhavian and Behzadan (2015) only used smartphone-based sensors and radio-frequency identification 
(RFID) smart tags along with an artificial neural network (ANN) model to achieve 98.59% accuracy. Both papers suggested 
a novel method to detect performance through activity detection and take corrective actions. On the other hand, to ensure 
workplace safety and productivity, Akhavian and Behzadan (2016), Kim and Cho (2020), and Ogunseiju et al. (2021) used 
wearable devices (i.e., smartphones, motion sensors, IMU) along with AI to detect workers’ activities. In all three studies, 
researchers achieved more than 90% accuracy for activity prediction using DL algorithms (i.e., ANN, LSTM, CNN). 

Bangaru et al. (2020) used electromyography (EMG) sensor data to train an ANN model in a gesture-based performance 
recognition experiment, which helped detect the performance of wearing earplugs with 80% accuracy. In addition, the system 
provided timely feedback during the training process. In another experiment, Bangaru et al. (2021) used EMG and inertial 
measurement unit (IMU) to train an ANN model to detect scaffold builder activity with 94% accuracy, enabling real-time 
monitoring of worker activity to promote safety, productivity, and project control. Roberts et al. (2020) used CNN to estimate 
and track workers’ poses and detect workers’ activities with up to 78.5% accuracy. Ebrahimi et al. (2021) used construction 
labor productivity (CLP) data along with random forest (RF) to predict workers’ productivity in a construction project. 

4.2. Workers’ Mental and Physical Health 

Other than safety, one of the biggest challenges faced by construction workers is long-term health issues due to physically 
demanding tasks often performed in dynamic and harsh environments (Abdelhamid and Everett, 2002; Aryal et al., 2017; 
Tixier et al., 2016). There are several studies on workers’ mental as well as physical health related to construction work. For 
example, Aryal et al. (2017) used wearable sensors (e.g., EEG, infrared temperature) to estimate workers’ fatigue using a 
boosted tree classifier and achieved up to 82.6% accuracy in predicting fatigue. 

WMSDs are also very significant in the construction industry because workers may be tasked with physically demanding 
activities that require them to go past their physical body limits, often leading them to experience awkward body postures 
for extended times. Nath et al. (2018), Akanmu et al. (2020), Zhao and Obonyo (2020), and Mudiyanselage et al. (2021) 
used wearable sensors (i.e., smartphone, IMU, EMG) to detect awkward and unsafe body postures using AI that might cause 
WMSDs. Nath et al. (2018), Zhao and Obonyo (2020), and Mudiyanselage et al. (2021) achieved 90.2% accuracy, 0.911 F1 
score, and 99.35% accuracy, respectively. All participants agreed that the virtual reality (VR) based posture training system 
developed by Akanmu et al. (2020) enhanced their understanding of risks associated with unsafe body posture. Using an 
incremental learning strategy in the CLN network, Zhou and Obonyo (2021) were able to detect awkward body postures 
leading to WMSDs. Jabelli et al. (2018) used EEG signals with an SVM model to detect occupational stress with an accuracy 
of 80.32%. Later, Jabelli et al. (2019) improved the occupational stress detection accuracy to 84.48% by using wrist wearable 
biosensors with the SVM model. More recently, with the goal of understanding the effectiveness of VR training for drone 
operators, Sakib et al. (2021) correctly predicted workers’ performance, mental workload (MWL), and stress levels in 83% 
of cases. 

Jebelli et al. (2019), and Tang and Golparvar-Fard (2021) detected physical demand using a combination of different 
technologies. While Tang and Golparvar-Fard (2021) used photos and video data with a relatively more complex DL model 
to achieve 86.6% accuracy, Jebelli et al. (2019) used data from wrist wearable biosensors and SVM model to achieve 90% 
accuracy. Kim et al. (2021) and Lee et al. (2021) coupled SVM with wearable sensors to detect workers’ inattentiveness and 
perceived risk, respectively. 

5. Summary and Conclusion 

This study provided a comprehensive study on the application and impact of artificial intelligence (AI) in the construction 
industry. It explored how AI can improve worker safety, productivity, and well-being. The study included a systematic 
literature review, identifying key areas where AI is used in construction, such as safety performance and productivity, mental 
and physical health of workers, and the interaction between humans and AI. Construction is one of the most hazardous 
industries worldwide, which explains why most AI research has historically focused on safety-related problems. While the 
risk of injury in construction is undeniable, current advances and the availability of technology may not be sufficient to 
overcome this issue in the foreseeable future. Hypothetically, the risk of workers’ accidents and injuries can be eliminated 
if all construction tasks are automated. However, while the complete automation of all project activities seems unrealistic 
and practically impossible, state-of-the-art AI technologies can be used for workers’ safety through early prediction and 
intervention. A proper body posture and sound work methodology will also help avoid future bodily injuries and WMSDs. 
Beyond detection and intervention, AI can be used for appropriate workforce training. 

The literature review in this paper provided evidence that the successful implementation of AI can improve health, safety, 
performance, and productivity in construction. However, in the current state, AI is not a replacement for the human workforce 
but rather a helping hand, ensuring a positive technology experience, which will, in turn, motivate more workers to adopt AI 
and technology spontaneously. 

Finally, this systematic literature review can draw a future outline for AI applications in construction. Undoubtedly, more 
research on AI and automation is needed in construction. Although there are several examples from the literature in areas 
related to job site ergonomics, safety, and performance, there is still a clear gap with respect to the value of using AI to 
understand and promote workers’ health due to excessive workload. Since construction jobsites are dynamic and intense 
workplaces, along with bodily injuries, there is an opportunity for future research to also focus on health-related issues (both 
physical and mental) in various construction trades and work settings and recommend operational and policy changes to 
eliminate and ultimately remove contributing factors to safety and health problems in construction. While AI holds 
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significant potential for improving various aspects of the construction industry, a deeper understanding and careful 
implementation are necessary to fully realize its benefits and mitigate any negative impacts on workers. 
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