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Abstract: Housing building projects require careful project management because of their lengthy lead times, significant 
investment requirements, and high-risk nature. Aimed at effective management and risk assessment of engineering project 
construction, a risk management model for the entire process of project engineering is established. Risk information on 
engineering construction projects is obtained through case studies and relevant literature data, and key risk factors are 
screened using big data technology. Considering the complexity and nonlinearity of risk factors in engineering project 
construction, a feedforward model (BP) is adopted to solve the risk management model and achieve project risk prediction. 
Meanwhile, considering that traditional BP models are affected by initial parameters during the training process, they are 
prone to local convergence problems. Innovatively introducing a Sparse Search Algorithm (SSA) to optimize the 
construction of the SSA-BP engineering risk prediction model, achieving project risk management and evaluation. In the 
risk level prediction of risk factors, the Particle Swarm Optimization-Back propagation (PSO-BP) has a large error from 
sample 15 to sample 30, and the average prediction accuracy of the risk factor level is 73.65%, while the average prediction 
accuracy of SSA-BP model is 92.65%. In the project risk factor prediction, the average prediction accuracy of the SSA-BP 
model and PSO-BP model are 91.68% and 82.69%, respectively, which shows that the SSA-BP model has better risk 
management ability. The SSA-BP model exhibits higher precision and accuracy, improving the ability of engineering 
project risk management. In addition to offering trustworthy tools and procedures for decision-making in linked sectors, 
research provides a significant technical reference value for risk management in building projects. 

Keywords: Case study, building construction, construction projects, risk management, sparrow search algorithm (SSA), 
backpropagation (BP), particle swarm optimization-back propagation (PSO-BP). 
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1. Introduction 

Construction engineering has ushered in rapid development in recent years as well as great achievements in the Chinese 
industrial output value and livelihood economy. Construction engineering has developed into a foundational business in 
China, according to pertinent statistics. More than 50 million people are employed in the construction business, which is 
supported by many different disciplines, and the risk management of construction projects is crucial to the growth of the 
entire sector (Taofeeqet et al., 2020). Project risk management faces various challenges since it is impacted by market factors, 
human factors, technological constraints, cost considerations, and other elements in the real world. To effectively manage 
the entire process risks of construction projects and avoid risk issues during construction, case study methods are introduced 
into the entire process risk management of projects to improve the effectiveness of project risk management. By evaluating 
representative events and collecting data across the entire event range, case study methods are used to derive relevant 
guidance from specific cases, providing important judgment foundations for decision-makers (Qazi and Dikmen, 2019). The 
management focus and challenges of engineering projects can thus be more precisely reflected through the research of typical 
examples in engineering project risk management and the creation of a project whole process risk management model mining 
and analyzing engineering data. To achieve the project’s overall process risk control, the entire construction process, 
including the construction technique, equipment, employees, and materials, must be examined throughout the real risk 
management phase. Due to the complexity of risk management in construction projects, a BP neural network is introduced 
to solve the risk model. At the same time, the sparrow search algorithm is used to optimize the BP model and construct the 
SSA-BP model solution model, thereby achieving the monitoring and management of hazards in construction projects. This 
enables the monitoring and management of hazards in construction projects. The proposed method has good application 
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effects in building risk assessment, and the research content offers crucial technical references for risk management and 
construction management of construction projects, according to the data results. 

2. Related Works 

Case studies can offer useful management guidance for construction risk management in the sector of building construction, 
where the complexity and specialization of construction expose the entire process to many hazards. (Yoshikawa et al.,2020) 
investigated current construction risk issues and discovered that case studies and quantitative analysis might offer crucial 
guidance for engineering projects. As a result, to evaluate project risk and apply it to the field of wood building safety in the 
Canadian region, quantitative loss estimates, and related case studies were used. The analysis’s findings demonstrated that 
the suggested technique was successful in identifying risk issues and offering reliable project construction advice (Brill and 
Robin,2020). In their analysis of the state of construction risk management, (Baradan et al., 2022) note that the 
interdependence of project interests creates numerous hazards throughout project construction. By reviewing pertinent cases, 
using information modeling techniques to create a matrix of components, and evaluating the success of the strategy in 
particular situations, the goal is to lower the risks. The suggested solutions have been thoroughly examined, and they 
effectively monitor construction risk (Rehman et al., 2022). Several structures had issues with overheating concerns, 
according to an analysis of building failure analysis techniques done by (McLeod et al., 2020). Then, using pertinent case 
data, the corresponding data models for the building scenarios were created. Models are used to replicate current construction 
risk issues. The final results demonstrate the effectiveness of the suggested strategy in predicting construction hazards and 
in offering building designers useful management guidance (McLeod et al., 2020). In a study on construction hazards in 
building projects, (Andersson et al., 2019) found that a project’s risk management is significantly influenced by the 
organizational process of project construction. Therefore, to find useful guidance on organizational management, the 
organizational characteristics of construction were examined, as well as the characteristics of the various risk factors within 
the organization. The results demonstrate that the approach is good for streamlining organizational management procedures, 
preventing the occurrence of unforeseen occurrences, and successfully advancing the construction process (Andersson et al., 
2019). 

The effectiveness of construction risk management is increased by the use of information processing technologies. The 
effectiveness of construction risk management is greatly increased by information processing technology, according to a 
study on the subject by (Hasanpour et al., 2020). The field of underground project construction risk management was then 
addressed using an Intelligent Algorithm Model Combining Artificial Neural Networks and Bayesian Networks, and a 
project risk management model was developed by examining project case data. Specific cases were used to apply the model, 
and the cases were used to compare the effectiveness of the analysis method. The results demonstrated that the suggested 
technique is more effective at managing risks than other ways, which can better prevent project construction risks (Hasanpour 
et al., 2020). It can reasonably assess project risks caused by changes in project parameters. A study of the resource 
management process in construction projects by Bai et al. (2021) showed that poor resource management can have an impact 
on how resources are allocated and increase project management risks. The goal was to better manage risks brought on by 
competing project resources. After that, a risk management model for multi-project resources was built using analysis of 
existing project case data. The model investigates the numerous project construction influencing factors and develops risk 
indicators using correlation characteristics. To estimate the risk of project building, the risk data is additionally processed 
using a machine learning model. The proposed model has successfully monitored the complete project process in 
experimental tests, optimizing the project’s overall process goals and preventing projects from encountering risky issues. 
Bai et al. (2021) and Jiang et al. (2020) stated that construction costs are an important component of construction projects 
and have a significant impact on project construction. The focus of the research is on the application of backpropagation 
(BP) neural networks in building cost estimation. Firstly, the influencing factors of construction costs were analyzed. Six 
factors were selected as inputs for the estimation model. Then, a BP neural network estimation model was established and 
trained with ten samples. Through implementation analysis, it is shown that the estimation accuracy of this model is higher, 
has the lowest average error, and has good application effects in construction engineering (Jiang, 2020). 

According to the above research, risk management throughout the entire construction process is one of the important 
aspects of engineering construction, which is affected by environmental and construction factors, resulting in many 
difficulties in risk management. The above literature has conducted relevant research and discussion on engineering 
construction risks, but in practical application, there are still problems, such as inaccurate evaluation and inaccurate model 
construction. In this regard, the case analysis method is used to investigate project management risks. Considering the 
complexity of risk factors, the use of intelligent algorithms to process risk data can effectively improve the effectiveness of 
construction risk management and provide an important reference for the control of construction risk control. 

3. Risk Management Model for the Entire Process of Engineering Project Construction 

3.1. Construction of a Risk Management Model Based on Case Studies 

Long construction cycles, complicated task kinds, and high investment are characteristics of construction projects, and these 
characteristics create several risk factors throughout the management of the entire project. The numerous engineering project 
risk elements interact with one another at the same time, posing significant management issues for the entire process. To 
create a risk management model, engineering project instances are therefore mined and studied to uncover the risk 
components of the entire project construction process. Fig. 1 depicts the project’s overall risk management framework (Liu 
et al., 2022). 
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Fig. 1. Project whole process risk management system (adopted from Liu et al., (2022)) 

The database system, the data identification system, and the data mining system are the three primary parts of the whole 
risk management system. Project cases, which include a substantial amount of project risk management case data, make up 
the majority of the database system. The data mining system is utilized to create a project management risk characteristic 
system after the identification system discovers various types of project risk elements (Feng and Qu, 2022). Considering the 
numerous factors that affect engineering construction and their uncertainty and hierarchy, the study mines the data on 
construction risk features using the hierarchical fuzzy approach. Due to the ambiguity and confusion surrounding 
construction project risk factors, it is necessary to split the risk factors extracted from the instances and establish the 
significance of the indicator variables based on their level of influence on the risk relevance. Therefore, according to the 
engineering monitoring quality standards, the hierarchical molecular method was used to mine the main factors. Table 1 
shows how to rank the indicators based on their importance. 

Table 1. Explanation of index importance scale 

Importance 
Scale 

Rule requirements 

1 
The comparison between factor A and factor B shows that the importance of both factors is 

consistent 

3 Comparison between Factor A and Factor B, factor A is more important than Factor B 

5 Compared with factor B, factor A is more important than factor B 

7 Compared with factor B, factor A is more significant than factor B 

9 Comparison between Factor A and Factor B, factor A is more important than factor B 

2,4,6,8 Compare factor A with factor B, take the middle value 

 

The relevance of indicators fluctuates between levels in risk indicator mining, and there is interaction between the 
different levels of indicators (Nimrah and Saifullah, 2022). Each factor’s significance must be evaluated by building a 
judgment matrix using expert scoring and contrasting factors with target relevance. In Eq. (1) (Yeom et al., 2020), the one-
factor judgment matrix is displayed. 

 ( )ij n mB b                                                                                  (1) 

Between the matrix elements jB iB and, ijb  indicates the significance of the A-rated risk factor comparison, and n m

indicates the number of matrix rows and columns. To create the new matrix shown in Eq. (2), the matrix parameters are 
regularized. 

1

ij
ij n

ij
i

b
B b

b


 


                                                                              (2) 

Each row B in Eq. (2) must be added to determine the risk factor’s weight iW , and Eq. (3) shows the vector of the risk 

factor’s distinctive indications. 

 1 2, ,...,
T

nW W W W                                                                        (3) 
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Eq. (3), 1 2, ,..., nW W W  denotes the weight of each indicator, and the weight of a single indicator is calculated as seen in 

Eq. (4). 

1
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i ij
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The next step requires the calculation of the maximum characteristic input to the single-factor judgment matrix, as seen 
in Eq. (5). 

max
1

( )
( )

n
i

i i

BW

nW




                                                                         (5) 

The judgment matrix consistency must be determined to determine the project construction risk factors, and when the 
matrix satisfies the consistency standards 1 max n   , the remaining characteristic roots are calculated as 0 (Lu and 

Zhang,2022). Eq. (6) shows how to find the remaining characteristic roots when the matrix does not satisfy the constraints, 

max
2

n

i
i

n 


                                                                               (6) 

When the criteria are not satisfied, the matrix characteristic roots are modified, and the discriminant matrix must be 
examined to determine matrix consistency (Yeom et al., 2020). The level of significance is evaluated, as shown in Eq. (7), 
for other characteristic roots that were calculated to produce a negative mean and satisfy the criteria of the determination 
matrix. 

max

1

n
CI

n

 



                                                                              (7) 

The matrix consistency lowers and vice versa, the greater the matrix consistency, according to Eq. (7), where CI denotes 
the indicator important parameter and CI max denotes a positive connection. The project construction of various types of 

risk collection can then be determined according to the determined risk indicator factors. Through the fuzzy theory screening 
of the final indicator factors, the target layer corresponding to the risk indicator weight set Eq. (8) is then visible (Afzal et 
al., 2021). 

 1 2 3 4 5, , ,W W W W W W                                                                      (8) 

 1 2 3, , ,...,i i i i inW                                                                        (9) 

The set of criteria layer weights is set to  1 2 3, , ,...,i i i i inW     based on the outcomes of the collation of the target 

layer weights. Eq. (9) shows the evaluation vector for the criteria layer indicator. 

 1 2 3, , ,...,i i i i inW                                                                     (10) 

Eq. (10), iR  denotes the affiliation of risk factors at the criterion level and the target level evaluation vector, as seen in 

(11). 

V W R                                                                                (11) 

Eq. (11), R  denotes the affiliation of the target-level risk factors. The target level risk factors are scored against the 
criterion level risk factors, as seen in Eq. (12). 

, ( , 1,2...)

, ( , 1,2...)

T
i i

T
ij ij

T V D i j

T V D i j

   


  
                                                                   (12) 

Eq. (12), D  denotes the corresponding set of building construction risk factor evaluation levels, as seen in Eq. (13). 

 1 2 3 4 5, , , ,D D D D D D                                                                      (13) 

Eq. (13), 1 2 3 4 5, , , ,D D D D D  corresponds to the five levels of risk evaluation from low to high, corresponding to a score 

of 0 to 5. Building construction is rated as 0 1iT  when there is low risk1 2iT   when there is low risk, 2 3iT   

when there is high risk, 3 4iT  4 5iT  and when there is level high risk (Meharie et al., 2022). The selected risk factors 

were evaluated by an expert group, and the final risk management evaluation system for the entire construction project 
process is shown in Fig. 2. 
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Fig. 2. Risk management indicator system for the whole process of construction projects 

3.2.SSA-BP Engineering Risk Prediction Model Construction 

The primary project construction process risk elements are weeded out through the mining of engineering project risk cases. 
The BP model has shown good performance in dealing with complex nonlinear problems, so it is introduced to solve the 
problem. In Fig. 3, which depicts the structure of the BP risk management model (Jiang et al., 2021), three levels of results—
hidden, output, and input—are used to describe the structure of the BP model. 

 

Fig. 3. BP risk management model structure 

The mined project risk data is employed as the model’s input signal in the BP risk management model, passing 
successively via the implicit and output layers (Lin and Fan, 2019). To increase the model’s training accuracy, the starting 
parameters must be modified during the data training by the model’s training error. The indicated layers must be used to 
map the nonlinear data of the construction risk variables. The ultimate training effect of the data is influenced by the number 
of implied layers, which is determined using an empirical formula, as shown in Eq. (14) (Bai et al., 2021). 

k l m a                                                                                 (14) 

l , m a and in Eq. (14), respectively, stand for the number of neurons in the input, implicit, and output layers. These 
have a range of values between 1 and 10. For the researcher to choose the appropriate model training structure, the empirical 
Eq. is inserted into the model training process. However, in practice, conventional BP models are sensitive to the initial 
parameters and experience local convergence issues while being trained. To optimize the initial parameters of the BP model 
and enhance the model’s training effect, the Sparrow Search Algorithm (SSA) is implemented. The optimization search 
principle of the Mochat model, which is part of a swarm intelligence optimization method that mimics biological habits, is 
shown in Fig. 4. 
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Fig. 4. Schematic diagram of sparrow model optimization principle 

The sparrow model uses a division of labor between the sparrow population to find the best foraging spots, with the high-
energy individuals in the population acting as food-seeking sparrows, responsible for food collection, and the remaining 
individuals acting as following sparrows, obtaining food by following. At the same time, between 10% and 20% of the 
population will act as alarm sparrows, alerting them to risks on the periphery. The individual roles of the three types of 
sparrows can be dynamically switched in the food search, thus improving the effectiveness of the search for things (Zhang 
et al., 2021). Search sparrow actions are expressed as seen in Eq. (15). 
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In Eq. (15), ,
t
i jX  denotes the population individual i j in --dimensional position, aiter  represents the number of 

iterations, t  denotes the number of iterations, maxiter  denotes the maximum number of iterations, ST  denotes the safety 

value taking values in  0,1 , 2R  denotes the alert value taking values in the range  0.5,1 , L  denotes the element matrix, and 

Q denotes the number of normal distributions. The following sparrow actions are expressed as seen in Eq. (16). 
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                                                           (16) 

In Eq. (16), worstX  denotes the worst position for foraging by the following population, n  denotes the population size, 

PX  denotes the best position for foraging by the following population, A  denotes 1( )T TA AA  , and A  denotes the element

1  random assignment matrix. The alarm sparrow action is expressed as seen in Eq. (17). 
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                                                      (17) 

In Eq. (17), bestX  stands for the alarm population foraging optimal location,   for a random number obeying normal 

distribution, gf  for the optimal location at this time’s moderate value, if  for the individual’s moderate value, K  for the 

directional control coefficient, taking values in the range of  1,1 , and wf  for the population foraging’s worst moderate 

value. Fig. 5 illustrates the SSA-BP engineering risk prediction model process premise. 
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Fig. 5. Flow chart of SSA-BP engineering risk prediction model 

Fig. 5 shows the training process of the SSA-BP risk prediction model. The first step is to search for case analysis data, 
analyze and process the data, filter out risk indicator data, and plan and process the data. Before applying the scoring results 
of risk factors and construction expectations as sample data for the SSA-BP engineering risk prediction model, the risk 
management index weights and results of home building projects must first be weighted and calculated. To prevent the model 
training from sliding into local convergence, the sample data is split into a test set and a training set. All data is then 
normalized. The PB model and the SSA model are initialized to determine the initial size of the population and the number 
of workers and to set the number of model training iterations. Determine the maximum number of iterations of the population 
and the alert value of the SSA model according to the structural characteristics of the BP model. Initialize the parameters of 
the BP model, get the fitness value and optimal position of the population by training the initial parameters of the BP model, 
and continuously update the population to get the optimal position of the population. The optimal position parameters are 
assigned to the BP model to complete the training of the SSA-BP risk prediction model network and obtain the risk 
management evaluation results of the whole process of the construction project. 

4. Experimental Analysis of Engineering Project Risk Management 

4.1.SSA-BP Risk Forecasting Model Performance Test 

The experimental analysis process will conduct performance tests on the proposed SSA-BP model. The experimental data 
are taken from typical case data of engineering construction in the past ten years. Through screening, 126 sets of effective 
experimental data were obtained, the standardized processing was used as the model training dataset, and the model 
performance training was finished in MATLAB software. The experimental training parameters for the SSA-BP risk 
prediction model are displayed in Table 2. 

Table 2. Risk prediction model experimental training parameter information 

Model parameter types Parameter value 

SSA model population size 100 

Iterations 720 

Learning rate 0.01 

Security threshold of the SSA model 0.8 

BP Model Structure 14-5-1 

Crossover probability 0.1 

Scale factor 0.5 

 

The traditional BP model, Particle Swarm Optimization-back propagation (PSO), was selected for experimental 
comparison in the study. The training loss results of the three risk prediction models are shown in Fig. 6. 
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Fig. 6. Training loss results of three models 

The training loss results for the three models in Risk Sample 1 are displayed in Fig. 6(a). The loss training loss values of 
all three risk prediction models continue to decline as the number of model training iterations rises, as seen by the changes 
in the curve. The training loss values for the three models in risk sample 2 are displayed in Fig. 6(b). The SSA-BP model, 
which converges the quickest and has the lowest loss value, has the best overall performance. The PSO-BP risk prediction 
model similarly demonstrated good training performance, converging after 240 iterations with a loss value of 0.016. The 
SSA-BP model converged after 120 iterations with a loss value of 0.0896. The vast amount of engineering project data and 
high correlation, which made the conventional BP model susceptible to local convergence during training, were to blame for 
the BP risk prediction model’s poor overall performance. After 298 iterations and a loss value of 0.038, the BP model 
converged. As can be shown, the SSA-BP model outperforms the BP and PSO-BP models in terms of convergence and 
training performance. The training accuracy of the three models is displayed in Fig. 7. 

 

Fig. 7. Training accuracy of three models 

The training accuracy results for the three risk prediction models are displayed in Fig. 7. The training results for risk 
sample 1 are shown in Fig.7(a), while the training results for risk sample 2 are shown in Fig. 7(a). The SSA-BP risk prediction 
model, which tends to converge after 698 iterations with a model accuracy of 95.68%, and the PSO-BP model, which comes 
in second place with a model accuracy of 92.65% at 720 iterations, have the best training accuracy of the samples, according 
to the data results in Fig. 7(a). After 720 iterations, the BP model performed the worst with an accuracy of 72.65. The SSA-
BP model had the best training performance in Fig. 7(b), followed by the PSO-BP model, and the BP model had the poorest. 
The three final prediction accuracy was 92.65%, 87.65%, and 72.65%, respectively. The SSA-BP model exhibited the best 
training accuracy and the fastest convergence in the data training, according to the data results. To effectively manage the 
construction risk associated with engineering projects, SSA-BPl is used to train the engineering project risk data. 

4.2. Experimental Analysis of Risk throughout the Engineering Project 

The project, which is a housing construction project with a total project investment of RMB 5.645 billion, a total project area 
of 1.98 million square meters, a planned land area of 86,000 square meters, and a project capacity of 42,000 people, was 
chosen as the subject of the experimental analysis. The findings of the project risk level prediction using the SSA-BP model, 
as provided by the Institute, are given in Fig. 8. 
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Fig. 8. Prediction results of risk levels for engineering projects 

 

The findings of the PSO-BP model and the SSA-BP model for risk factors, respectively, are shown in Fig.8(a) and Fig. 
8(b). In the figure, the solid green line displays the training prediction results of the present training model, whereas the solid 
black line displays the outcomes of the real risk factor ranking. According to the test findings, the SSA-BP model has a mean 
prediction accuracy of 92.65% compared to the PSO-BP model’s mean forecast accuracy of 73.65% for samples 15 to 30. 
In the 120 sets of sample risk level predictions, the PSO-BP model’s average forecast accuracy was 86.65% and the SSA-
BP model’s average prediction accuracy was 93.25%. The data results show that the suggested SSA-BP model can more 
effectively manage project risks and assess the degrees of project risk factors. Fig. 9 displays the risk factor forecast accuracy 
for engineering projects. 
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Fig. 9. Prediction results of engineering project risk factors 
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Fig. 9. Prediction results of engineering project risk factors (continued) 

The training outcomes for human risk factors, management risk factors, equipment risk factors, environmental risk 
factors, and technical risk factors are displayed in Fig. 9(a) through Fig. 9(e), respectively. In Fig. 9(a), the SSA-BP model 
achieved the highest risk prediction accuracy, with prediction accuracy above 91.23% for all ten risk samples. The PSO-BP 
model came in second place, with an average accuracy of 87.65%, and the manual assessment came in last, with an average 
accuracy of 72.65%. The SSA-BP model, which has a prediction accuracy above 98.68% and an average prediction accuracy 
of 93.79% in samples 3 and 4, is the best risk prediction in Fig. 9(b). On average, throughout the samples of data, the PSO-
BP model and manual assessment achieved a prediction accuracy of 87.65% versus 72.45%. The manual assessment fared 
the lowest, with an average prediction accuracy of 74.68%, while the SSA-BP model did the best in terms of forecasting 
equipment risk, environmental risk, and technical risk. Technical delivery and technical building technology pose the 
majority of technical risks in technical risk prediction, both of which are more uncertain and are influenced by environmental 
and human management elements. This assesses the overall performance of the model. The SSA-BP model, PSO-BP model, 
and manual evaluation have an average forecast accuracy of 91.68%, 82.69%, and 64.58%, respectively, in terms of technical 
risk. According to the experimental data, the SSA-BP model managed all five primary risk variables well, increasing risk 
management effectiveness by 45.86% compared to manual assessment tools and boosting risk management efficiency by 
11.65% compared to the PSO-BP model. Table 3 shows the forecast inaccuracy of risk factors for engineering projects. 

With 15 sets of sample data for the five primary risk factors chosen for training, Table 3 displays the results of the training 
of the two risk prediction model errors. In the training of human risk prediction, the SSA-BP model has a lower total training 
error than the PSO-BP model. In samples 3, 4, and 5, the PSO-BP model’s training errors were 0.186, 0.186, and 0.256, 
respectively, whereas the SSA-BP model’s training errors were 0.126, 0.133, and 0.140. A 26.89% improvement in error 
compared to the PSO-BP model in the training of five risk variables gives the SSA-BP model the best training error 
performance in the training of equipment risk, environmental risk, and technological risk. In terms of training error 
performance, the SSA-BP model outperforms the PSO-BP model by 26.89% for the five risk factors. This demonstrates that 
the SSA-BP model fits the requirements of whole process risk management in construction projects and performs excellently 
when applied to those projects. 
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Table 3. Prediction error results of risk indicators 

Sample 
No 

Human risk Manage risk Equipment risk 
Environmental 

risks 
Technical risks 

PSO-
BP 

SSA-
BP 

PSO-
BP 

SSA-
BP 

PSO-
BP 

SSA-
BP 

PSO-
BP 

SSA-BP 
PSO-
BP 

SSA-
BP 

1 0.156 0.128 0.265 0.123 0.264 0.126 0.235 0.123 0.256 0.138 

2 0.181 0.087 0.196 0.103 0.254 0.163 0.245 0.096 0.195 0.097 

3 0.186 0.126 0.198 0.146 0.196 0.156 0.196 0.125 0.186 0.134 

4 0.186 0.133 0.256 0.096 0.156 0.132 0.198 0.142 0.186 0.121 

5 0.256 0.140 0.186 0.076 0.135 0.096 0.256 0.096 0.195 0.131 

6 0.156 0.096 0.156 0.094 0.265 0.156 0.156 0.121 0.216 0.129 

7 0.189 0.120 0.176 0.156 0.196 0.134 0.189 0.096 0.264 0.114 

8 0.158 0.124 0.293 0.143 0.156 0.125 0.176 0.125 0.254 0.129 

9 0.176 0.103 0.194 0.146 0.245 0.096 0.293 0.125 0.196 0.109 

10 0.256 0.125 0.289 0.105 0.186 0.124 0.123 0.236 0.156 0.129 

11 0.195 0.096 0.297 0.126 0.215 0.153 0.103 0.091 0.153 0.107 

12 0.216 0.134 0.185 0.166 0.234 0.165 0.146 0.091 0.165 0.112 

13 0.189 0.142 0.165 0.099 0.196 0.096 0.158 0.123 0.186 0.123 

14 0.203 0.163 0.213 0.125 0.256 0.156 0.176 0.124 0.256 0.156 

15 0.216 0.126 0.189 0.026 0.275 0.123 0.189 0.103 0.156 0.124 

5. Discussion 

Construction risk management in construction projects is a crucial aspect of project management. It significantly affects the 
successful execution and smooth operation of the project. Nevertheless, present-day construction risk management is faced 
with several issues and challenges. Traditional risk assessment techniques are inadequate in accurately evaluating complex 
project scopes. The construction sector’s healthy growth relies on risk management methods and tools that merge technology 
and experience. This research paper introduces an SSA-BP model to tackle these concerns and performs comparative 
experimental analysis. Experimental results reveal that the SSA-BP model provides superior performance in risk sample 
training loss and accuracy. Compared to traditional BP and PSO-BP models, the SSA-BP model yields better accuracy and 
faster convergence speed. In comparison, traditional BP models exhibit inferior loss values and accuracy, which increases 
the risk of local convergence. These results indicate that the SSA-BP model exhibits better convergence and training 
performance than traditional BP models and PSO-BP models. Secondly, for the entire process risk management experiment 
of specific engineering projects, the SSA-BP model is used to predict the risk level and risk factors. The SSA-BP model has 
a higher prediction accuracy for risk levels than the PSO-BP model, which can more accurately determine the level of project 
risk factors and achieve effective management of project risks. Compared with traditional manual evaluation, the SSA-BP 
model has significantly improved its prediction accuracy and can better solve risk management problems. Finally, it is 
evident from Table 3 that the SSA-BP model exhibits lower training errors in comparison to the PSO-BP model among the 
training errors of different risk factors. This once again proves the excellent performance of the SSA-BP model in managing 
process risks throughout the entire construction project. In summary, the SSA-BP model has obvious advantages in 
construction project risk management. The experimental comparison and analysis reveal that the SSA-BP model performs 
well in training loss, training accuracy, risk level prediction, and risk factor prediction. The SSA-BP model shows significant 
improvements in convergence, training performance, and prediction accuracy compared to traditional BP models and PSO-
BP models. Thus, the SSA-BP model can be used to effectively manage and control risks, improve the success rate, and 
ensure the smooth operation of engineering projects during construction risk management. Moreover, the study proposes a 
new method and tool to handle risk management issues with great significance to the development and improvement of the 
construction industry, which can be referenced to handle similar problems. 

6. Conclusion 

One of the crucial work components of construction projects is risk management, and effective risk management is beneficial 
to the project’s smooth progress. The project risk management case data is mined using data mining technologies, and a 
project full-process risk management model is built using case analysis. The BP model is presented to build a project risk 
prediction model, considering the complexity and nonlinear aspects of project risk components. When dealing with 
complicated data, traditional BP models encounter initial parameter issues, so the SSA algorithm was utilized to optimize 
the BP model and create the SSA-BP model project risk prediction model. The SSA-BP model achieved the best training 
performance in the training loss test of the three models, with the model convergent after 120 iterations and a loss value of 
0.009. Sample 1 served as the experimental sample. The PSO-BP model, the second-best performer, converged after 132 
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iterations and currently has a loss value of 0.019. The average prediction accuracy of the SSA-BP model was 93.25%, while 
the average prediction accuracy of the PSO-BP model was 86.65% in the results of the project risk level prediction. The 
SSA-BP model, which has a 26.89% improvement in error performance compared to the PSO-BP model, has the best error 
performance among the two-risk prediction model error training in the five risk factors training. The SSA-BP model has 
excellent performance in project risk management. The main project risk content is obtained through case analysis, and the 
advanced PSO-BP model is used to manage and evaluate project risks, which is superior to relevant evaluation models. The 
technology studied has important reference value for effective construction and risk assessment in the construction industry. 
However, there are also shortcomings in the research. In project construction, it is necessary to consider indirect factors that 
cause risks and to add more risk assessment factors in the later stage. By considering more risk factors, the application effect 
of the technology can be improved. 
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