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_________________________________________________________________________________________ 

Abstract: The Work Sampling (WS) technique, used worldwide to understand how workers spend their time, represents a 
time-consuming and costly activity. Therefore, several researchers work on different approaches to automate the data 
collection using sensor-based and vision-based technologies. The challenge of all the sensor-based approaches is that they 
do not provide the share of time in different work categories. The lack of knowledge on a possible correlation between Direct 
Work and, e.g., presence, location, or worker movement represents a gap in the current body of knowledge. Thus, this 
research aims to understand the correlation between Direct Work as the independent predictor variable; and Movement as 
the dependent response variable. The authors used the data gathered through the application of WS in five case studies on 
building renovation projects in Denmark. To explain this correlation. The authors selected a combination of four quantitative 
techniques: (1) curve estimation; (2) linear regression; (3) ANOVA analysis; and (4) t-test. The correlation of the result is 
discussed considering three assumptions: (1) the structure of the day; (2) global vs. local; and (3) Movement vs. Transporting 
and Walking. The result shows a significant correlation between Direct Work and Movement with an average R2 of 0.328. 
This is considered acceptable predictability taking the socio-technical system aspect of a construction site into account.  
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1. Introduction

Work Sampling (WS) was introduced in the early nineteen 
hundreds as a technique to observe workers' efficiency and 
productivity (Barnes, 1968). WS is deployed to determine 
how workers spend their time on different work activities, 
and it became popular, among other reasons, due to its 
straightforward application. The theory of WS is based on 
the laws of probability, which indicate that independent 
observations made at repeated random times will have the 
same distribution. Thus, random observations can be 
translated into percentages of time spent in activity 
categories (Barnes, 1968). 

Over the years, the technique has been employed by 
practitioners and researchers for several different purposes: 
(a) to measure and conceptualize flow and workflow
(Kalsaas, 2011; Wernicke et al., 2017); (b) to identify the
share of time spent on a single activity of the same
construction process on different job sites, e.g., transport
(Pérez et al., 2015); (c) to provide insight for comparing the
average productive workforce utilization to respective work
processes in various projects (Picard, 2002); (d) to measure
labor efficiency and inefficiency (Neve et al., 2021; (e) to

set up a baseline measure for improvement and to serve as 
a challenge to management and the workers (Neve and 
Wandahl, 2018); (f) to understand the evolution of the share 
of time spent in different work categories along the years 
(Wandahl et al., 2021), among others. 

In most cases, researchers and practitioners focused on 
understanding the share of time spent in different work 
categories. The WS categories have changed over time due 
to interpretation and application discrepancies. Before 1985, 
WS studies adopted a two-category classification of direct 
and non-direct work. This, to some extent, reflects Ohno’s 
(1988) understanding of work as divided into Waste Work 
(WW) and Value-Added Work (VAW). However, Ohno, 
considered the father of the Toyota Production System, 
which inspired Lean Manufacturing philosophy, concluded 
that the VAW category must be further divided into Direct 
Work (DW) and Non-Value-Added-Work (NVAW). 
NVAW does not add value but is needed under the existing 
work conditions, e.g., transportation of material. The DW 
category is generally understood as the amount of direct, 
physical, and output-producing work. It can be seen as the 
time a worker spends producing tangible output, e.g., 
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square meters of bricks installed (Choy and Ruwanpura, 
2006). Most WS studies generally agree on this definition 
of DW (Wandahl et al., 2021). However, for the NVAW 
category, a considerable inconsistency in concept and 
terminology appears. Some studies categorize all NVAW 
as WW, while other studies have a more detailed view of 
NVAW as several subcategories like preparatory work, 
transportation, etc. Generally speaking, NVAW in WS is 
referred to as Indirect Work (IW), resulting in WS having 
three categories of time, namely DW, IW, and WW 
(Wandahl et al., 2021). 

The non-direct work or unproductive work category is 
the opposite of DW and has traditionally been quite 
inconsistent and included everything besides DW, such as 
supportive work (e.g., transporting bricks to the final 
destination by hand) and waiting time (e.g., waiting to 
receive bricks in the place of execution). The non-work 
definitions have fluctuated throughout the history of WS 
and have often been broken down into subcategories. In 
recent years, research generally applied the categories of 
DW, IW, and WW, however, with different names and 
subcategories, e.g., transport, travel, instruction, personal 
time, delay, etc. (Gong et al., 2011). In the current research, 
a six-category split is applied. One category of DW: (1) 
Production. Three categories of IW: (2) Transporting, (3) 
Preparing, and (4) Talking. Lastly, two categories of WW: 
(5) Walking and (6) Waiting. 

As the WS methodology is based on direct observation 
of workers, data collection is costly, not scalable, and time-
consuming (Zhao et al., 2019). A relatively large amount of 
observations are required to achieve statistical validity. 
According to Thompson (1987) a minimum sample size of 
510 observations is required to achieve a 95% confidence 
level. If the aim is to analyze the distribution over time, the 
necessary number of observations per hour depends, among 
others, on the number of workers, and for 0-50 workers, 46 
observations per hour are needed (CII, 2010). Data 
collection, therefore, often lasts from 3 to 5 days, where one 
or more observers must watch construction activities full 
time. Wandahl et al. (2022) concluded that if the 
observation requirements are obeyed, the sample can be 
robust and representative. 

Because WS is time-consuming and costly, several 
researchers work on different approaches to automate the 
data collection by different kinds of vision-based and 
sensor-based technologies. Vision-based activity analysis 
requires single or multiple cameras for detecting and 
tracking resources as well as procedures for activity 
recognition (Liu and Golparvar-Fard, 2015). Sensor-based 
technologies enable the identification of measurement of 
workers’ posture, motions, location, and presence (Cheng 
et al., 2017). Among the existing digital approaches for data 
collection, sensor-based technologies using body-worn 
sensors have gained greater attention among researchers for 
monitoring construction activities (Ryu et al., 2018) due to 
their flexibility to adapt to different external conditions and 
their reduced size easily to be embedded in, e.g., wristbands. 
Body-worn sensors can have integrated accelerometers, 
gyroscopes, and magnetometers, called Inertial 
Measurement Units (IMUs). IMUs can measure inertial 
body motions in three axes, as each activity creates unique 
acceleration signal patterns. Examples of such approaches 
could be smartwatches used for localization (Pérez et al., 
2022) or for activity recognition or monitoring workers' 
health and safety conditions (Guo et al., 2017). Other more 

stationary sensors are location-based sensors like global 
navigations satellite system (Li et al., 2020), radio-
frequency identification (Lu et al., 2011), ultrawideband 
(Teizer et al., 2020), and Bluetooth beacons (Görsch et al., 
2022; Olivieri et al., 2017) which all can track workers’ 
real-time location and automatically collect worker-
activity-related data (Cheng et al., 2013). 

The challenge of all these sensor-based approaches is 
that they do not directly substitute WS, as they do not 
provide the aforementioned share of time in different work 
categories. In particular, it is relevant for practitioners and 
researchers to know how much time is spent on DW. The 
lack of knowledge on a possible correlation between, e.g., 
presence, location, or worker movement and DW represents 
a gap in the current body of knowledge. 

By adopting wrist-worn Global Navigation Satellite 
System (GNSS) sensors, it is possible to monitor workers' 
positions. Their position and time data can be used to 
identify how much they move in distance and duration. In 
the WS technique, these are related to categories 2 and 5, 
i.e., Transporting and Walking, respectively. This research 
is based on an underlying assumption that DW is negatively 
correlated to the workers' movement. This assumption 
seems logical, as the more time workers spend moving 
around on the construction site, the less time they can spend 
on value-adding activities. This assumption is based on the 
work by Neve et al. (2020b), who analyzed the correlation 
between all categories of WS in three different case studies, 
and concluded that the strongest correlation was between 
DW and Transporting + Walking combined. If this 
correlation is strong and valid, it would be possible to use 
sensor-based location data of how much construction 
workers move around as an indicator for their DW rate. 
Only when this correlation has been tested and confirmed 
does it makes sense to continue with the GNSS data 
collection approach for an automated WS data collection.  

The aforementioned forms a gap in the current body of 
knowledge, and this research sets out to close this gap by 
answering the research question (RQ): 

RQ: What is the relationship between construction 
workers’ Movement (Walking and Transporting) and time 
spent in Direct Work activities? 

The RQ will be answered and exemplified based on data 
from renovation projects. Renovation projects were 
selected for several reasons. Firstly, previous research 
(Neve et al., 2020b) has indicated that such a relationship 
exists in renovation projects partly because renovation 
projects have issues related to existing site conditions, 
which can create logistical challenges. Secondly, the 
logistical difficulties of renovation projects (e.g., Kemmer 
and Koskela, 2014) likely results in more worker movement. 
Lastly, several resources conclude that renovation often has 
lower productivity than other types of construction. 

2. Methodology 

The study adopted the Case Study method (Yin, 2003), as 
the primary research strategy because it enables an 
investigation of a given phenomenon. A case study is an 
empirical inquiry that investigates a contemporary 
phenomenon in depth and within its real-life context, 
especially when the boundaries between phenomenon and 
context may not be clearly evident. The phenomenon of the 
study comprises the relationship between construction 
workers’ movement and time spent in DW. The real-life 
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context is represented by five renovation projects located in 
five different cities in Denmark. The authors studied the 
phenomenon through the application of the WS technique. 

The methodology section first introduces the five 
projects. Secondly, the data acquisition process is described. 
Thirdly, data aggregation and data cleaning are presented. 
Fourthly, it is explained how the linear regression data 
analysis was conducted. Lastly, the data discussion presents 
the assumption adopted in this study. 

2.1. Description of Case Studies 

Five cases of renovation projects were chosen, named in 
this research as Case 1, 2, 3, 4, and 5 (see Table 1). The 
cases were selected mainly based on three criteria: (1) they 
had to be renovation projects, (2) they needed to be similar 
to compare production system behaviors; and (3) the trades 
had to include traditional renovation work such as carpentry, 
painting, masonry, and so forth, which would occur on any 
renovation project. 

Table 1. Case studies characterization. 

 Case 1 
“Roskilde” 

Case 2 
“Odense” 

Case 3 
“Aarhus” 

Case 4 
“Vejle” 

Case 5 
“Herning” 

Contract General 
contr. 

General 
contr. 

Turnkey 
contr. 

General 
contr. 

General 
contr. 

Value 
(mill $) 

~59 ~73 ~53 ~59 ~31 

Duration 
(years) 

5 5 4 4 5 

Built 
(Year) 

1950s 1950s 1960s 1950s 1950s 

Size 
(m2) 

48,000 ~46,000 23,700 46,500 22,800 

Units 
(no) 

593 587 297 601 291 

The chosen cases’ original building structures and floor 
plans were very similar, and they were planned to go 
through comparable deep renovations, including the 
building envelope, interior, and installations. All cases were 
social housing renovation projects consisting of apartments 
(the details for each are outlined in Table 1). All cases were 
located in comparable cities in Denmark. A short 
description of each case is presented in the following. 

Case 1: The case study was conducted in the city of 
Roskilde. The project consists of 24 five-story housing 
buildings. Four buildings were under renovation during the 
period of this case study. The main renovation tasks were 
carpenter work such as replacing windows, new facades, 
new roofs, etc. For this reason, most of the renovation 
activities were conducted outside the buildings from the 
façade scaffolding. Installing new ventilation and electrical 
systems were the only two indoor renovation activities. 
During the execution of the renovation project, tenants were 
granted rehousing in the period when their apartment was 
being renovated, but they were living in the apartment 
during the remaining renovation. 

Case 2: The case study was conducted in the city of 
Odense. The project consists of two- to four-story buildings 
with two apartments on each floor. There is a total of 587 
housing units. The buildings were first established in the 
early 1950s. The renovation included replacing old 
balconies, windows, kitchens, and bathroom interiors, 
adding insulation in walls, putting up drywall partitioning 
walls, and turning some units into accessible housing units 
by installing elevators in the stairwells. During the 
execution of the renovation project, tenants were rehoused 

in the period when their apartment was being renovated, but 
they were living in their apartment during the renovation of 
the neighboring buildings. To minimize the need for 
rehousing, only around 15% of the units were renovated 
simultaneously. 

Case 3: The case study was conducted in the city of 
Aarhus. The project is a social housing complex initially 
built in the 1960s and now undergoing deep renovation, 
including new facades, new roof, and completely new 
installations. In total, there were 297 housing units. During 
the execution of the renovation project, tenants were 
rehoused in the period when their apartment was being 
renovated, but they were living in their apartment during 
the renovation of the neighboring buildings. 

Case 4: The case study was conducted in the city of 
Vejle. The project is a 46,500 m2 large social housing 
complex initially built in the 1950s and now undergoing a 
deep renovation, including new brick facades, new roof, 
new windows, additional insulation, new installations, and 
new interior like kitchen, bathroom, flooring, etc. During 
the execution of the renovation project, tenants were 
rehoused in the period when their apartment was being 
renovated, but they were living in their apartment during 
the renovation of the neighboring buildings. 

Case 5: The case study was conducted in the city of 
Herning. The project consists of 350 housing units 
established between the years 1953-1957. In total, 19 
blocks, all three stories high and with a basement. The 
building complex was undergoing a deep renovation where 
all units got a new kitchen, bathroom, facades, balcony, and 
completely new installations. All blocks got a new roof, 
improved insulation, and restored basements. Elevators 
were installed for 90 of the units, and several units were 
merged into larger units, resulting in 311 units after the 
renovation. During the execution of the renovation project, 
tenants were rehoused in the period when their apartment 
was being renovated, but they were living in their apartment 
during the renovation of the neighboring buildings. 

2.2. Data Acquisition Description 

This study adopted a six-work category classification 
during the WS technique. The categories were DW also 
called Production (Category 1). Three categories fall into 
IW, namely Transporting (Category 2), Preparing 
(Category 3), and Talking (Category 4). Finally, two 
categories of WW, namely Walking (Category 5) and 
Waiting (Category 6). Moreover, in this study, the time of 
each observation was recorded. For this, the authors 
adopted the smartphone application “Counter – Tally 
Counter” by Tevfik Yucek. This application allowed the 
researchers to digitally record each observation with an 
exact time stamp and export this data in a Comma-
Separated Value (CSV) format for further processing. 

For gathering data at the construction sites, the 
observers, i.e., the authors of this paper, conducted random 
tours under normal conditions, that is, representing standard 
workdays. Visual observations were conducted by 
observers walking the construction site from the beginning 
of the workday until the end of the workday (8 hours/each). 
The tours aimed to avoid observing patterns of behavior. 
Hence, the observers varied their routes through the job site 
and, to increase randomness, the times for observations. 
The data collection studies were conducted in different 
periods from 2017 to 2021 (see row 1 in Table 2). The 
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duration of the studies was different from case to case. For 
each case, the necessary number of observations to achieve 
a 95% Confidence Interval was based on CII (2010). Hence, 
the total number of days of direct observations was 27 days, 
distributed as following (see row 2 in Table 2): 9 days in 
Case 1 and 2; 5 days in Case 3; and 3 days in Case 4 and 5. 

Table 2. Information regarding Work Sampling. 

 Case 1 Case 2 Case 3 Case 4 Case 5 
Period of the 
study 

Weeks 45 
and 46, 
2021 

Weeks 25 
and 26, 
2021 

Week 49, 
2017 

Week 12, 
2018 

Week 11, 
2018 

Days of 
observation 
(days) 

9 9 3 3 3 

Number of 
workers 
observed (no) 

40 50< 40> 50< 50< 

Number of total 
observations 
(no) 

1,642 2,641 5,734 12,650 24,933 

Observations  
per hour (no) 

~23 ~37 ~44 ~85 ~83 

Min 
observations 
needed per hour 
(no) 

7.5 7.5 21 21 21 

Hourly  
datapoint (no) 

60 61 29 26 31 

Trades  
observed 

Carpenter 
Mason 
HVAC 
Demolition
Scaffolder 

Carpenter 
Mason 
HVAC 
Electrician 
Demolition 

Carpenter 
HVAC 
Painters 
Flooring 
Facade 

Carpenter 
Mason  
HVAC 
Painters 
Concrete 

Carpenter 
Mason 
Facade 
Flooring 
Demolition

Work Sampling 
data also used in 

10 8;9 1;3;4;5;6 1;3;4;5;6 1;2;3;4;5; 
6;7 

1 (Neve and Wandahl 2018); 2 (Neve et al. 2020); 3 (Teizer et al. 2020);
4 (Neve et al. 2020); 5 (Wandahl et al. 2021); 6 (Neve et al. 2021);
7 (Johansen et al. 2021); 8 (Pérez et al. 2022); 9 (Salling et al. 2022);
10 (Pérez et al. 2022) 

Five trades (see row 8 in Table 2) were observed during 
the WS application. The number of trades for each case was 
chosen to represent the majority of work in progress during 
the study periods, so the production system behavior of 
each case could be analyzed and compared. The number of 
workers observed during each case study varied but was 
always around 50 (see row 3 in Table 2). At the end of the 
job site visits, the number of observations in each case study 
was distributed as follows (see row 4 in Table 2): 1,642 
observations in Case 1; 2,641 observations in Case 2; 5,734 
observations in Case 3; 12,650 observations in Case 4; and 
24,933 observations in Case 5. Cases 4 and 5 had a high 
number of observations, as several students were assigned 
as observers, e.g., in case 5, 12 students collected data 
together with the research team. The number of 
observations per hour (see row 5 in Table 2) was in the 
range of 23 to 85 observations per hour, and for all cases, 
this number was higher than the needed number of 
observations per hour (see row 6 in Table 2) to obtain a 95% 
Confidence Interval, calculated based on CII (2010). 

To achieve uniform datasets among the five cases, all 
observations were grouped into hourly observations. The 
accumulative observations in each hour were then assigned 
as the dataset for further analysis in this research. 
Considering eight hours of daily observation, the number of 
hourly data points assigned to analyze further was N = 207 
(see row 7 in Table 2), distributed as follows: 60 data points 
from Case 1= (representing 29% of the total sample); 61 
from Case 2 (30%); 29 from Case 3 (14%); 26 from Case 4 
(12%); and 31 from Case 5=31 (15%). 

The results of the WS are shown in Table 3, including 
information on observation counts and percentages in each 
category and the 95% CI (plus-minus two times the 
standard deviation) for the DW category. 

Table 3. Results of the WS for each case. 

Data Prod. Talk. Prep. Trans. Walk Wait Total 
Case 1 

N 411 136 419 320 230 126 1,642 
�̅� 25.03% 8.28% 25.52% 19.49% 14.01% 7.67% 100% 

േ 2 ∙ 𝑠 ±2.2%       
Case 2 

N 571 284 641 542 416 187 2,641 
�̅� 21.62% 10.75% 24.27% 20.52% 15.75% 7.08% 100% 

േ 2 ∙ 𝑠 ±1.3%       
Case 3 

N 1,982 733 1,439 833 510 237 5,734 
�̅� 34.57% 12.78% 25.10% 14.53% 8.89% 4.13% 100% 

േ 2 ∙ 𝑠 ±1.3%       
Case 4 

N 4,928 1,825 3,454 845 881 717 12,650 
�̅� 38.96% 14.43% 27.30% 6.68% 6.96% 5.67% 100% 

േ 2 ∙ 𝑠 ±0.9%       
Case 5 

N 7,777 6,259 4,684 2,314 1,896 2,003 24,933 
�̅� 31.19% 25.10% 18.79% 9.28% 7.60% 8.03% 100% 

േ 2 ∙ 𝑠 ±0.6%       

The N value in Table 3 represents the number of 
observations in each work activity category. For example, 
of the 1,642 observations in Case 1 (see row 1 in Table 3), 
411 were classified into the Production category, 
representing 25.03% of the total observations; 136 into the 
Talking category, representing 8.28%; 419 into the 
Preparing category, representing 25.52%; 320 into the 
Transporting category, representing 19.49%; 230 into the 
Walking category, representing 14.01%; and the remaining 
126 into the Waiting category, representing 7.67%. 

2.3. Data Aggregation and Data Validation 

During the data aggregation process, the observations were 
grouped into hourly intervals, which then are the data points 
used in the analysis. For the data cleaning, only data 
covering an entire hour were used. An example is on the 
third day of data collection in Case 5, where work stopped 
at 14:30. In this situation, all observations from 14:00 to 
14:30 were deleted as they did not cover an entire hour. 

Table 4 shows the average numbers of all six data sets, 
the five case studies, and the sum of all data points, named 
in this study as Case ALL, resulting in N = 207. The 
complete data set of the aggregated data is presented in 
Appendix 1. 

Table 4. Average aggregated data points from each case. 

Data  
sets 

Prod. 
avg. 

Talk. 
avg. 

Prep. 
avg. 

Trans. 
avg. 

Walk 
avg. 

Wait 
avg. 

Case 1 
(N=60) 

26.07% 8.66% 25.54% 16.97% 14.39% 6.70% 

Case 2 
(N=61) 

21.50% 10.94% 24.39% 20.05% 15.93% 7.18% 

Case 3 
(N=29) 

36.65% 15.15% 25.30% 6.62% 11.50% 4.78% 

Case 4 
(N=26) 

35.83% 15.08% 24.53% 12.81% 8.45% 3.30% 

Case 5 
(N=31) 

28.80% 23.84% 21.20% 8.50% 9.33% 8.33% 

Case ALL 
(N=207) 

29.77% 14.73% 24.19% 12.99% 11.92% 6.06% 

After the aggregation and the cleaning, each data point 
is considered an array that includes the relative percentage 
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of observation in each category for that hour. For example, 
in Case 1, datapoint no 14 is the observations on day 2 from 
the time 13.00-14.00, and the value of the datapoint is 
[Production = 35.29%; Talking = 17.65%; Preparing = 
5.88%; Transporting = 17.65%; Walking = 5.88%; Waiting 
= 17.65%]. This adds up to 100% and covers 17 
observations made in that time interval. The average of 
these data points is illustrated in Table 4. 

In addition, stabilization curves of the share of 
observations of the DW were created to provide a visual 
check of the accuracy of the collected data, cf. Fig. 1. All 
WS data are assessed as valid based on (a) the stabilization 
curves (Fig. 1) being stable after around 50% of the data 
collection; (b) more data points than the minimum required 
(CII, 2010) were collected (Table 2); (c) the calculated 95% 
confidence interval is low, i.e., around 1 percent point 
(Table 3). 

 

Fig. 1. Stabilization curves of the five cases. 

2.4. Data Analysis 

The data analysis aimed to test whether a possible 
relationship between workers’ movement and DW is 
statistically significant. DW is the Production category, and 
Movement is the sum of Walking and Transporting in the 
WS data. The analysis was applied to the six data sets 
representing Case 1-5 and Case ALL. The authors used the 
Statistical Package for the Social Sciences (SPSS) software 
for statistical analysis. The authors selected a combination 
of four quantitative techniques in order to answer the 
research question: (1) curve estimation; (2) linear 
regression; (3) ANOVA analysis; and (4) t-test. 

1. Curve estimation with 11 equations was applied, first to 
understand if a statistically significant relationship can be 
established for the six different datasets, and second to 
understand which equation provides the best predictive 
capabilities. The 11 equations were linear, logarithmic, 
inverse, quadratic, cubic, compound, power, S, growth, 
exponential, and logistic. The linear was found best fitting, 
thus the introduction of the last three tests. 

2. Linear regression analysis providing a linear equation. 

3. ANOVA analysis providing a p-value that reveals the 
statistical significance of the linear regression model’s 
predictive capabilities. 

4. t-test enabling the calculation of 95% Confidence 
Intervals (CI) for the linear regression model’s coefficients. 

Common for the two first tests are that they rely on 
interpreting the correlation coefficient (R). Previous 
recommendations (Cohen, 1988) outline that R > 0.5 
reflects a large effect size. Research in the same area as this 

has previously used R = 0.318 as an acceptable level (Liu 
et al., 2011). Nonetheless, in this research R = 0.5 is chosen 
as the minimum limit for accepting any relationship 
established through the statistical analysis. The R-value can 
be squared (R2) to instead reflect the predictive capabilities 
of the independent variable in the analysis. The R2 value 
corresponding to R = 0.5 is 0.25, and thus, R2 = 0.25 is the 
lower acceptance limit. Additionally, all established 
relationships must have a statistical significance level 
above 95% (p ≤ 0.05) to be valid. 

2.5. Data Discussion 

The last section of this paper discusses the correlation of the 
result considering three assumptions described in the 
following. 

1. Structure of the day. 

Like most previous WS research, this research assumes 
that a working day is homogenous, that is, the hourly 
interval in the results is identical in terms of work, working 
conditions, etc. In general, WS results provide a distribution 
of work time in different categories, cf. section 2.2, 
assuming that this distribution is valid at all times for the 
phenomenon observed. A few previous WS studies have 
indicated that this is not a fully valid assumption. Neve et 
al. (2020b) presented detailed day curves, which showed a 
fluctuation of DW during the day. In addition, Björkman et 
al. (2010) and Gouett et al. (2011) concluded that especially 
starts and stops during the day influenced the DW. 

2. Movement vs. transporting and walking. 

The correlation in the results is analyzed with the 
assumption that DW is correlated with Transporting and 
Walking combined, called Movement. This assumption 
was based on the work by Neve et al. (2020b), which 
analyzed the correlation between all categories of WS in 
three different case studies. They concluded that the 
strongest correlation was between DW and Transporting + 
Walking combined. However, that assumption has not been 
tested. 

3. Global vs. local. 

An underlying assumption in the research question is 
that the correlation between DW and Movement is global, 
i.e., valid across cases. Wandahl et al. (2021) investigated a 
sample of 474 WS studies from the last 50 years and 
concluded that academics and practitioners should be 
careful when using WS for generalizing purposes. 
Josephson and Björkman (2013) concluded that WS was 
not valid to generalize over time, as the working conditions 
can change and will influence the WS result.  

In addition to discussing the above-mentioned three 
assumptions, the discussion will also consider the topics of 
correlation vs. causality in the research, limitation of the 
research, and industrial implication of the research. 

3. Results 

This section presents the results of the four quantitative 
techniques chosen to answer the research question. 

3.1. Curve estimation 

To reach this research’s objective, curve estimation was 
done on the six data sets (cf. Table 5). 
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Table 5. Curve estimations of the six data sets with 11 equations. 

Data sets  Linear Logar. Inverse Quadr. Cubic Comp. Power S Growth Expon. Logistic 

Case 1 (N = 60) R2 
p 

.119 

.007 
.0052 
.08 

.014 
.0364 

.122 

.025 
.132 
.047 

.004 

.619 
.072 
.038 

.101 

.014 
.004 
.619 

.004 

.619 
.004 
.619 

Case 2 (N = 61) R2 
p 

.451 

.001 
.553 
.001 

.185 

.001 
.519 
.001 

.582 

.001 
.395 
.001 

.368 

.001 
.109 
.009 

.395 

.001 
.395 
.001 

.395 

.001 

Case 3 (N = 29) R2 
p 

.356 

.001 
.331 
.001 

.262 

.005 
.368 
.003 

.398 

.005 
.433 
.001 

.229 

.009 
.148 
.039 

.433 

.001 
.433 
.001 

.433 

.001 

Case 4 (N = 26) R2 
p 

.310 

.003 
.283 
.005 

.169 

.037 
.337 
.009 

.453 

.004 
.206 
.020 

.199 

.022 
.128 
.072 

.206 

.020 
.206 
.020 

.206 

.020 

Case 5 (N = 31) R2 
p 

.332 

.001 
.311 
.001 

.222 

.007 
.334 
.003 

.336 

.010 
.319 
.001 

.280 

.002 
.185 
.016 

.319 

.001 
.319 
.001 

.319 

.001 

Case ALL  
(N = 207) 

R2 
p 

.328 

.001 
.288 
.001 

.008 

.001 
.352 
.001 

.362 

.001 
.006 
.001 

.010 

.150 
.009 
.171 

.060 

.001 
.060 
.001 

.060 

.001 

The curve estimation results in the predictive capability 
(R2) with the lower limit at R2 = 0.25 and a statistical 
significance level at 95% (p ≦ 0.05) of each established 
relationship for the 11 equations. Table 5 reveals that only 
Case 1 fails in establishing a sufficient predictive capability 
with adequate significance. It can, therefore, be concluded 
that, a statistically significant relationship exists between 
DW and Movement for most of the 11 equations. 

In Case 2 and Case 5, only the S and the Inverse 
function fail to reach the R2 and the p threshold. For Case 3, 
only the S and the Power equations fail to reach the 
threshold. In case 4 and the Case ALL, only four of the 11 
equations succeed in establishing a relationship above R2 = 
0.25 with a statistical significance level of 95% (p ≦ 0.05). 
The four equations are the linear, logarithmic, quadratic, 
and cubic. Thus, these four equations need closer analysis 
to conclude which is the best to explain the relationship 
between DW (%) and Movement (%). 

3.2. Linear regression 

Looking at the R2 value for the six cases per the four 
selected equations, the Cubic is the best (R2=0.426), 
followed by Quadratic (R2=0.382), and then Linear 
(R2=0.355). The ranking of the significance level is the 
opposite, where the Linear has the lowest average 95% 
significance value, and the Cubic has the highest. 

The selected four equations’ capacities are evaluated 
regarding both overfitting and underfitting, which is a 
known approach from machine learning. An overfit model 
is one that is too complicated for the data set. The regression 
model then becomes tailored to fit the quirks and random 
noise of the data set. Underfitting is the opposite. A visual 
inspection often reveals overfitting. Therefore, the four 
regression models and the data set are plotted in Fig. 2. 

When DW increases to above 50%, the logarithmic 
model predicts that Movement is almost steady around 20%. 
This is clearly a false prediction, which is clearly seen in 
Fig. 2, and also logical in a causal view, as Movement must 
approach 0% when DW approaches 100%. The quadratic 
regression model predicts that a horizontal tangent line 
occurs, and Movement increases when DW increases. This 
is neither causal nor visible in the dataset in Fig. 2. Based 
on Fig. 2, it, therefore, becomes clear that both the 
logarithmic and the quadratic regression models are 
overfitting. The cubic regression model predicts a rather 
complicated relationship between DW and Movement, 
which is not easily explained with rational thinking or 
through a causal relationship. Based on the above 

argumentation, the linear regression model has the best and 
most valid predictive capability. 

 

Fig. 2. Regression with four selected equations (N = 207). 

3.3. ANOVA analysis 

ANOVA is carried out to further investigate the linear 
regression model with DW as the independent (predictor) 
variable and Movement as the dependent (response) 
variable.  

Table 6. Regression analysis, t-test (95% CI), and 
ANOVA for DW-Movement. 

Case Regression 
y=ax+b 

a  
(95% CI) 

b  
(95% CI) 

R2 ANOVA 
p-value 

Case 1 
N=60 

y = -0.407x 
+ 0.420 

(-.698; -.115) (.333; .506) .119 .007 

Case 2 
N=61 

y = -0.848x 
+ 0.542 

(-1.093; -.604) (.482; .603) .451 .001 

Case 3 
N=29 

y = -0.526x 
+ 0.374 

(-.805; -.246) (.265; .483) .356 .001 

Case 4 
N=26 

y = -0.344x 
+ 0.336 

(-.560; -.128) (.256; .416) .310 .003 

Case 5 
N=31 

y = -0.369x 
+ 0.285 

(-.568; -.170) (.223; .346) .332 .001 

ALL 
N=207 

y = -0.641x 
+ 0.454 

(-.767; -.515)  (.415; .494) .328 .001 

Table 6 presents the linear regression analysis for the five 
cases, including the accumulative case (named ALL).  

A t-test gave the 95% CI for the predictor coefficient (a) 
and the constant coefficient (b), and the R2 values from the 
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regression analysis, and finally, the ANOVA result shows 
the statistical significance level for each case. 

Further, Fig. 3 visually represents the linear regression 
models with the data from all five cases. The bold line in 
Fig. 3 illustrates the summarized regression model for all 
cases, whereas the thin lines represent the regression model 
for each case. The predictive capability of the linear model 
range depends on the case and ranges from R2=0.119 to 
R2=0.451, with an average of R2=0.328. The significance 
level based on the ANOVA process shows p-values ranging 
from p=0.001 to p=0.007. Thus, all are statistically 
significant above the 95% level. 

 

Fig. 3. Linear regression per case (N = 207). 

3.4. T-test Analysis 

Based on the t-test, the 95% CI for parameters a and b in 
the linear regression model is calculated. The result is 
shown in Table 6. The linear regression model equation for 
the accumulative Case ALL is presented in equation 1. 

y = -0.641x + 0.454  (1) 

where: 
y = Movement (%) 
x = DW (%) 

It is not expected that the regression model would be 
able to predict all the new data points, as R only is 
R=57.27%. 

4. Discussion 

Several aspects of the observed correlation can be discussed 
to shed further light on how DW and Movement of 
construction workers are connected. 

4.1. Structure of A Day 

The correlation in the results is analyzed with the 
assumption that a working day is homogenous, i.e., each 
hourly interval in the analysis is identical in terms of work, 
working conditions, etc. Previously WS has clearly 
demonstrated that this is not a fully valid assumption. Neve 
et al. (2020b) present detailed day curves, which show, cf. 
Fig. 4, a clear pattern of the amount of DW fluctuating 
during the day. 

 

Fig. 4. Day curve example (Neve et al., 2020b). 

The fluctuation is mainly due to productivity issues at 
the start of the day, just before and after breaks, and at the 
end of the day (Johansen et al., 2021; Neve et al., 2020b). It 
seems that the DW-Movement ratio is relevant to 
investigate further with the present data with respect to time 
of the day. Fig. 5 depicts both the above-mentioned ratio 
and the R2 value for each hourly interval for Case 1-5. 

 

Fig. 5. Structure of a day (N = 207). 

Fig. 5 reveals some very interesting insights. The dots 
on the figure represent the ratio of DW and Movement for 
each hourly interval (N = 207) of the five cases. In all five 
cases, there was a morning break around 9 o’clock and a 
lunch break around 12 o’clock. The bold line is the average 
ratio within each hourly interval. Firstly, the plot in Fig. 6 
clearly shows the time of the breaks. These are the times 
where the DW-Movement ratio is lowest, i.e., low amount 
of DW and more Movement. The same issue is for the start 
of the day, where less DW is done, and more walking is 
needed to start the production, e.g., getting material, tools, 
walking to office trailers, etc. Also, at the end of the day, 
less DW and more Movement take place when shutting 
down the production. It is observed that this pattern is 
recognizable in the R2 values. Around breaks, in the 
morning and the afternoon, the R2 is very low, concluding 
that there is a weak correlation between DW and Movement. 
It is also clear that the R2 is very high when production is 
running, i.e., in between breaks. In these periods, R2 is 
higher than 0.5, showing that the more than 70% of the data 
can be predicted. This is a very strong correlation. It can, 
thus, be argued that the correlation between DW and 
Movement is very strong when normal production 
conditions exist. 

4.2. Movement vs. Transporting and Walking 

The correlation in the results is analyzed with the 
assumption that DW is correlated with Movement. This 
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assumption is based on the work by Neve et al. (2020b), 
who analyzed the correlation between all categories of WS 
in three different case studies, and concluded that the 
strongest correlation was between DW and Transporting + 
Walking combined. 

Fig. 6 depicts on the left side a linear regression model 
of DW and Walking and on the right side a linear regression 
model of DW and Transporting. The Case ALL data set is 
used, thus, N = 207 in both models, cf. Table 4 and 
Appendix 1. 

   

Fig. 6. Walking (left) vs. Transporting (right) (N = 207). 

It is evident from the regression analysis depicted in Fig. 
6 that both correlations are weak, i.e., R2 = 0.226 and 0.108, 
respectively. These are weaker correlations than the 
Walking and Transporting combined (called Movement), cf. 
Table 6, where R2 = 0.328. To further understand why the 
correlation is stronger when Walking and Transporting are 
combined than individually, one must understand what 
Walking and Transporting are on the construction site. 

In WS, Walking describes a worker walking to or from 
the production area without tools or material in his hands. 
There are several typical causes for walking. It can be 
related to (a) getting to and from the work area in the 
morning, around breaks, or in the afternoon; (b) personal 
time for toilet breaks; (c) request for information, where a 
worker decides to walk to ask the foreman, site manager; (d) 
logistics, i.e., walking to pick up material, other supplies, 
and equipment and tools; (e) Unnecessary and extra breaks, 
where the worker walks to a site container, their car; (f) 
Unnecessary and extra walking in relation to c and d due to 
poor planning and management; and (g) Apparent 
efficiency where workers walk around to deceptively show 
that they are busy and efficient. 

Transporting is when construction workers are observed 
walking with material, supplies, or tools in their hands. 
Transporting is, therefore, very related to points d and f 
above. Thus, a dual relationship is often the case. That is, 
when a worker is walking due to logistic tasks, the worker 
will soon thereafter be doing transporting, i.e., walking 
back to the work area with material, supplies, or tools. Thus, 
a causal explanation for why it makes sense to combine 
Walking and Transporting into Movement is present. 

4.3. Global vs. Local Correlation 

This research assumed that the correlation between DW and 
Movement was global, i.e., valid across cases. Table 5 
showed that the correlation was significant in four of the 
five cases. Table 6 revealed that the a and b parameters in 
the linear correlation varies from case to case. It seems, 
therefore, that one cannot assume a certain correlation 
globally. Instead, the correlation is present only locally. 

Table 7 shows the global predictability of each of the 
cases on each other. The data show the percentages of the 
data points that are inside the 95% CI of the predictor 
regression model. For example, the regression model of 
Case 2 (y = -0.848x + 0.542) can predict 58% of the data 
points of Case 5. 

Table 7. Predictive capability globally. 

 
Case 

1 
Case 

2 
Case 

3 
Case 

4 
Case 

5 

Average 
predictive 
capability 

Case 1 100% 39% 14% 35% 16% 26% 
Case 2 53% 100% 76% 73% 58% 65% 
Case 3 40% 26% 100% 62% 65% 48% 
Case 4 25% 20% 34% 100% 29% 27% 
Case 5 18% 15% 69% 19% 100% 30% 

Average 
prediction 

of case 
34% 25% 48% 47% 42%  

Table 7 shows that the predictive capability of each 
linear regression model ranges from 14% to 76% of data 
points. On average, the predictive capability is a bit lower 
than 50%. The predictive capability of each case’s linear 
regression model fluctuates; thus, no conclusion can be 
drawn regarding the global correlation. 

Interestingly, each case is somewhat different in how 
good it is at being predicted, cf. the bottom row in Table 7. 
It seems that Case 2 is harder to predict than, e.g., Case 3. 
Therefore, the homogeneousness of Case 2 and Case 3 is 
investigated. From Table 1, it is seen that the two cases are 
similar in trades, type of project, and year build but quite 
different in size, i.e., the number of units to be renovated. 
The context of the two cases is thus concluded to be 
homogenous. The performance data of the two cases are 
reviewed in Fig. 7. 

 

Fig. 7. Case 2 and 3 datapoints comparison. 

From Fig. 7, it is seen that there is a significant 
difference in performance, i.e., DW, of Case 2 and Case 3, 
where Case 3 has DW rates of around 40%, and Case 2 has 
DW rates in the range of 20%. This could indicate that the 
predictive capability is not equally good on the entire range 
of DW. This is investigated further. The regression model 
of Case 1 (cf. Table 6) is used to predict the 61 data points 
of Case 2, the 29 data points of Case 3, the 26 data points 
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of Case 4, and the 31 data points of Case 5 (cf. Table 4). 
Then, the regression model of Case 2 is used to predict the 
data points of Case 1 to 5, and so on. This results in N = 828 
(4*207=828) predictions of Movement (y in the equation in 
Table 6) based on DW (x in the equation in Table 6). All 
the N = 828 predictions are attached in Appendix 2. 

A prediction is accepted if the result of the linear 
regression equation is within the range of Movement plus 
minus the CI of the actual datapoint. The result of this 
analysis is depicted in Fig. 8, where the average 
predictability relative to the DW is illustrated. 

 

Fig. 8. Predictability within DW intervals (N = 828). 

There is a clear trend visible in Fig. 8. The lower DW is, 
the harder it is to predict Movement. When DW is low, 
there are two possible explanations: (1) if the production 
activities are dependent on handling (e.g., carpentry work), 
it indicates that the onsite production is running poorly; and 
(2) if the production activities are industrialized (e.g., off-
site fabrication), it reduces the labour workload and, 
consequently, it increases the time spent on transporting 
and handling the pre-fabricated systems. Another possible 
reason can be on-site logistics in terms of Movement, but a 
range of other factors could also be the cause for low DW. 
For instance, lack of materials, incomplete drawings, work 
interference, out-of-sequence work, etc., are often 
mentioned as disablers of high productivity (Hughes and 
Thorpe, 2014; Jarkas, 2015). It is, therefore, reasonable that 
the model’s predictability is low on the lower end of the 
DW scale. Fig. 8 illustrates that the predictability is around 
30-50% as long as DW is above 15%. This supports the 
conclusion that it is globally accepted that Movement 
correlates with DW in non-industrialized systems, however, 
the linear regression equation with parameters a and b is 
only valid locally. 

4.4. Correlation or Causality 

This research uses a statistical approach to analyzing WS 
data from five cases. The main statistical method is, 
therefore, the regression model, which is looking for the 
correlation between two variables. In this research, the 
variables are DW as the independent predictor variable and 
Movement as the dependent response variable. Examples of 
statistical analysis of WS data can be found in, e.g., 

Siriwardana et al. (2017) and Jenkins and Orth (2004), who 
both conducted regression analysis between DW and 
productivity. Neve et al. (2020b) performed statistical 
regression on the different WS categories on single projects, 
and Wandahl et al. (2022) also applied statistical measures 
to a single WS study. Especially the statistical correlation 
between DW and Construction Labor Productivity has been 
heavily debated in academia (Gouett et al., 2011; 
Shahtaheri et al., 2015). The debate centers around whether 
there is a causal relationship between the time you spend on 
productive activities and the quantitative output of the 
productive activity. The conclusion in the DW vs. 
Productivity debate is, as in all other statistical cases, that 
the researchers need to confirm that a causal relationship 
between the two variables exists in order to draw a 
conclusion with practical implications. The following is, 
thus, a discussion of whether a causal relationship between 
DW and Movement exists. 

Section 4.2 explained how Movement was composed of 
Walking and Transporting combined, what Walking and 
Transporting are on a construction site, and how there is a 
logical dependency between Walking and Transporting. 
Movement is thus the share of time construction workers 
use on walking empty-handed or with material or tools. DW, 
on the other hand, is the share of time construction workers 
uses in production. In WS, time is considered as either DW, 
IW (e.g., Transporting), or WW (e.g., Walking), and the 
sum of these three ads up to 100%. It is thus evident that if 
more time is spent on DW, less time is spent on IW and 
WW, illustrating a logical negative correlation. Moreover, 
the average time spent on Movement is 27.6% of the work 
time (cf. Appendix 1), thus the largest none productive 
category. 

When production is planned well and execution is 
running smoothly with good flow and high efficiency, it is 
logical that a worker not doing value-adding activities is 
likely to do walking or transporting material or tools. Some 
walking is probably due to other activities like personal 
time, going for breaks, etc. In this high efficiency scenario, 
a sound negative correlation between DW and Movement 
is causal. This is also visible in Fig. 8, where predictions of 
DW based on Movement are best when DW is high. When 
production is running poorly, there are likely more causes 
for Movement, like rework, additional Movement due to 
on-site logistics, more waiting time, where workers can 
walk around, etc. Again, this reasoning is supported by Fig. 
8, where it is evident that the correlation between DW and 
Movement is lowest when DW is low. 

The above cause and effect discussion needs to consider 
that construction production here is viewed as a socio-
technical system. This implies firstly that, in system 
thinking, it is likely that not modeled or not identified 
components exist. In other words, there are probably 
several other reasons for Movement than not producing. 
This research has limited its scope to not search for and 
include these potential other factors causing Movement. 
Therefore, achieving a significant R2 effect size cannot be 
expected, which is also the case for this research, where the 
overall correlation between DW and Movement has an 
effect size of R2 = 0.328. 

4.5. Limitations 

This research holds several limitations. Firstly, all of the 
collected data originates from Danish renovation projects. 
Renovation projects distinguish themselves from other 
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project types by having several unique characteristics. 
Recent works by Neve and Wandahl (2018), and 
Tzortzopoulos et al. (2020), have shed light on renovation 
and point out that the main challenges are: (1) existing 
building structures with several unknown characteristics; (2) 
an often not optimal construction site layout for logistics 
and material handling; (3) highly specialized tasks and 
trades, e.g., removing asbestos, etc.; and (4) dealing with 
occupied buildings and tenants on site. Tenants in 
proximity to ongoing construction work require a high level 
of protection (e.g., dust, noise) and make managing the 
craftsmen-tenant relationship an additional challenge in 
renovation projects. These combined characteristics make 
renovation a more challenging environment to manage than, 
e.g., new build. Thus, transferability to other types of 
construction is limited. 

Secondly, the data analysis only includes five case 
studies. To generalize based on five cases contains 
uncertainties, which should be considered when 
interpreting the conclusion of this research. The issue of 
global correlation has been discussed in this research, and 
it is clear that the five cases behave differently, as all cases 
show a correlation but with different regression models. 
However, it is still possible to conclude positively on the 
research question targeted in this research. Moreover, to 
include more cases would likely not change the conclusion, 
as these potential additional cases would also be different 
but show a correlation between DW rates and Movement. 

Thirdly, the effect size R, describing the strength of the 
relationship between the two variables DW and Movement, 
varies from 0.34 to 0.67 on a scale from 0 to 1, where 0 is 
no relationship at all between the two variables and 1 is a 
perfect correlation. The average effect size for all data is R 
= 0.57. R values were calculated from R2 values in Table 6. 
It is often discussed in the literature what an acceptable 
effect size is, and according to (Cohen, 1988), an effect size 
of R > 0.5 is a large effect size. This view is also supported 
by Neve et al. (2020a), where a correlation with an effect 
size of R=0.49 is concluded as acceptable. When 
interpreting the effect size of the correlation between two 
variables, one needs to bear in mind that the two variables, 
in this case, originate from a socio-technical system. A 
socio-technical system does not behave in accordance with 
the law of physics as several parts of the system can 
influence the variables, and also, more important, human 
behavior impacts the system in a somewhat unpredictable 
manner. Thus, an effect size of R = 1 would never be 
possible in a socio-technical system (Wandahl et al., 2022). 
As a result, this research holds the limitation that it will not 
be possible to achieve a 100% correlation between DW and 
Movement thus, using Movement as an indicator for DW 
rates will inherently include some uncertainties. 

4.6. Industrial Impact 

The construction industry continuously strives to reach 
higher productivity rates to secure more value for money 
for the clients and the society and better profit margins for 
the supply team. One Lean approach to reach this is to be 
more effective, i.e., have less waste and more VAW time. 
WS is an excellent diagnostic tool for identifying how time 
is spent on the construction site, and the output of WS is a 
benchmark of how time is distributed. This benchmark is 
needed to identify the right countermeasures for reducing 
waste time. WS has, however, a downside, namely the 
effort and time required to do observations. Today, a 
contractor typically sets aside one site manager for five 

days to collect data. This large effort is often a barrier to 
conducting WS, which is why several different studies 
currently attempt to automate the data collection by means 
of different sensor-based technologies. The hope is that if 
technology can automate the WS data collection, more 
contractors would do it, and then likely more contractors 
would succeed in reducing waste time and then eventually 
improve construction labor productivity to the benefit of 
construction in general. 

5. Conclusion 

This research addressed the RQ of what is the relationship 
between construction workers’ Movement (Walking and 
Transporting combined) and time spent in DW activities. 
The authors presented different possible analyses using the 
data gathered through the application of the WS technique 
in five case studies. 

The authors selected a combination of four quantitative 
techniques in order to answer the research question, those 
being: (1) curve estimation; (2) linear regression; (3) 
ANOVA analysis; and (4) t-test. Then, this paper discusses 
the correlation of the result considering three assumptions: 
(1) the structure of the day; (2) global vs. local; and (3) 
Movement vs. Transporting and Walking. 

The results of curve estimation were that four curves 
(linear, logarithmic, quadratic, and cubic) had R2 above the 
threshold limit of R2 = 0.25 and a statistically significantly 
better than p ≦ 0.05. The more detailed regression analysis 
showed that the logarithmic and the quadratic regression 
models are overfitting, and the cubic regression model 
predicts a complicated and unrealistic relationship between 
DW and Movement. Therefore, the linear regression model 
was selected for the further analysis. The ANOVA analysis 
showed that the predictability of the linear regression model 
on the different cases was R2 = 0.328 with p ≦ 0.001. The 
t-test, was used to calculate the 95% CI for parameters a and 
b in the linear regression model. 

This research raised topics to be examined in greater 
depth in future research efforts. This research work 
discusses the correlation of DW and Movement based on 
some assumptions previously mentioned. Future studies 
should consider other assumptions, such as (1) considering 
the structure of the day dissimilar regarding the features of 
the work activities conducted in each period of the day; for 
that, future studies should compare the WS results between 
cases exclusively among the same hourly interval; and (2) 
assuming the correlation between DW and Movement was 
local, in other words, that the share of time in different 
categories varies from each construction site to each 
construction site with different features. 

Another topic for future investigation is to explore the 
correlation of DW and Movement in industrialized 
construction projects. This research aimed to understand the 
correlation of those two variables based exclusively on 
renovation projects where most of the activities conducted 
are extremely labour resources dependent. Further research 
can explore the variables collected in other construction 
projects, which present off-site construction. Examples of 
this type of project could be projects that adopt 
prefabrication, panelization, or modularization systems. 
Those systems will deliver the produced off-site 
components, consequently affecting the productivity of the 
whole project by reducing the share of time spent on onsite 
production activities. 
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Appendix 1 

A table showing the aggregated data points for all N=207 can be found on this URL:  

https://www.dropbox.com/s/2ndyouo97yak6sk/Appendix1.pdf?dl=0 

 

Appendix 2 

A table showing each case’s ability to predict other cases, N=828, can be found on this URL: 

https://www.dropbox.com/s/raoixr5j4cyjv7i/Appendix2.pdf?dl=0 
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