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Abstract: Multimodal transport has emerged and applied to logistics work as single-mode transport was unable to meet 
the growing demand for logistics.  Due to the difference in cost and time consumption between different modes of 
transportation, the path planning of multimodal transport is different from that of single-mode transport. This paper firstly 
established a multimodal railroad consignment path optimization model under the condition of transportation time 
uncertainty and then optimized the path and transportation mode with the particle swarm optimization (PSO) algorithm 
according to the path optimization model. In addition, the PSO algorithm was optimized by a genetic algorithm to avoid 
the optimization process of the PSO algorithm from falling into the locally optimal solution. Finally, simulation 
experiments were carried out on the improved PSO algorithm, and it was compared with the traditional PSO and genetic 
algorithms. The results showed that the improved PSO algorithm converged to stability after about 200 iterations, the 
traditional PSO algorithm converged to stability after about 240 iterations, and the genetic algorithm converged to stability 
after about 400 iterations; the total transport cost and time of railway transportation were USD 114,300 and 52.5 h; the 
total transport cost and time of the path obtained by the genetic algorithm were USD 60,400 and 35.6 h; the total transport 
cost and time of the path obtained by the traditional PSO algorithm were USD 37700 and 24.3 h; the total transport cost 
and time of the path obtained by the improved PSO algorithm were USD 3,1900 and 23.4 h. 
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1. Instruction

With the rapid development of society, the demand for 
various materials in the construction process is gradually 
increasing. It is obviously difficult to meet the demand by 
relying only on the materials produced in the nearby areas, 
so it is necessary to transport materials from other regions 
to local areas through logistics, and the materials produced 
locally can also be transported to other regions through 
logistics to promote the development of economic 
exchanges (Elbert et al., 2020). Transport methods that can 
be used in logistic transport include land, sea, and air 
transport. Land transport can be divided into highway 
transport and railway transport. There are various transport 
methods, and different types of transport methods have 
different advantages and disadvantages. For example, air 
transport is fast but costly; sea transport can carry a large 
cargo volume, but it is limited by the route and depends on 
a sufficient draught environment (Borocz, 2019). However, 
single-mode transport can no longer afford the gradually 
increasing volume of goods, both in terms of efficiency and 
transportation costs. For example, rail consignment in land 
transport can be realized by adding compartments to the 

train, but the train can only run on the tracks, resulting in a 
lack of freedom (Li et al., 2017). Multimodal transport 
combines waterway transport, highway transport, and 
railway transport, and selects the appropriate transport 
mode for the goods at different intermediate points in the 
whole logistic transport process, improving transport 
efficiency and reducing the cost. Based on the road 
impedance function of the public road bureau, Guo et al. 
(2020) improved the conditional value-at-risk, established 
a nonlinear programming model with generalized travel 
time as the objective function, and used the cellular ant 
colony algorithm to solve the model. The results of the 
empirical analysis verified the applicability of the proposed 
load redistribution method to such areas and the 
effectiveness of the algorithm. Ji et al. (2015) designed a 
transport mode combination optimization model based on 
the network characteristics of a multimodal transport 
system, used a genetic algorithm as an effective tool to 
solve the optimization problem, and finally verified the 
feasibility of the model by example. Gun et al. (2016) 
designed an effective method applicable to simulate 
multimodal transport systems affected by emergency 
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situations and carried out a case study to verify the 
feasibility of applying the method. In the previous studies, 
the nonlinearities in the model were taken into account in 
the construction of the path planning model, and different 
optimization algorithms were used to find the optimal 
planning route based on the path planning model. The study 
aims to plan the routes in multimodal transportation to 
reduce the consignment cost and time. In the construction 
of the multimodal transport route planning model, by 
introducing the time triangle fuzzy number, the route 
planning model took into account the uncertainty of 
transportation time when planning the consignment route. 
The particle swarm optimization (PSO) algorithm was used 
to solve the path planning model, and the crossover and 
mutation operations in the genetic algorithm were used to 
improve the PSO algorithm to avoid falling into the locally 
optimal solution in the process of finding the optimal 
solution. Finally, a case in the multimodal transport 
network of Henan province was taken as the subject for 
simulation experiments, and the improved PSO algorithm 
was compared with the genetic and traditional PSO 
algorithms. The results showed that the PSO algorithm 
improved by the genetic algorithm was faster in path 
optimization. Then, the planned logistics path was 
compared with the actual planning path of the case, the 
single railroad planning path, and the paths obtained by the 
genetic and traditional PSO algorithms. The planning paths 
obtained by the three optimization algorithms were more 
advantageous than the actual planning path of the case in 
terms of transportation cost and time, which verified the 
effectiveness of the path planning models. The planning 
path obtained by the improved PSO algorithm consumed 
lower transportation costs and shorter time compared with 
the paths obtained by the other two algorithms, which 
verified the effectiveness of the improved PSO algorithm. 
The construction of the multimodal path planning model 
under uncertain time conditions and the improvement of the 
traditional PSO algorithm in this paper both provide 
effective references for the optimization of multimodal 
transport paths. The challenge in the research process is the 
existence of uncertainties in the construction of the path 
planning model, and this paper used the triangular fuzzy 
number of time to initially consider the impact of uncertain 
time on the path planning, but in reality, the uncertainties 
affecting the path planning are not only time, so the 
direction of the subsequent research is to consider more 
uncertainties in the construction of the path planning model. 

2. Multimodal Transport under Uncertain Conditions 

2.1. Multimodal Transport Path Optimization Model 
under Transport Time Uncertainty 

Fig. 1 shows a sketch of a logistics network in the process 
of railroad consignment after the adoption of multimodal 
transport. It is a directional acyclic network. In Fig. 1, there 
are eight nodes, node 1 is the starting point, and node 8 is 
the end point; there are 11 paths, all of which can be 
finished by highway, railway, and waterway transport. 
Logistics often produce various uncertainties in the 
transportation process, influenced by external factors 
(Medvediev et al., 2020). For example, the transportation 
time cannot be fully maintained within the set time and will 
be affected by the transportation road conditions and 

weather; goods may also be temporarily increased or 
decreased in the intermediate nodes in the transportation 
process. Therefore, the uncertainties in the planning of 
multimodal rail consignment paths also need to be taken 
into account, but because of the various uncertain 
conditions that can affect transportation in the actual 
logistics, if the uncertain conditions are taken into account 
in the construction of the multimodal rail consignment path 
optimization model, it will greatly increase the 
computational complexity of the optimization model 
(Ahmadian et al., 2017). Therefore, in order to facilitate the 
study of multimodal transport path optimization under 
uncertain conditions, this paper only considered the 
uncertainty of logistics consignment time, i.e., before 
constructing the path optimization model, the following 
assumptions were set the following assumptions: (1) the 
same batch of goods will not be split during transportation; 
(2) there is only one path between adjacent nodes in the 
same mode of transportation; (3) the multimodal-transport 
logistics network is a directional acyclic network, and the 
same batch of goods will not pass the nodes and paths that 
have been passed during transportation; (4) every node in 
the logistics network has transshipment capability, and the 
cost is zero when the goods are transferred by the same 
transport mode; ⑤ the multimodal-transport logistics 
network is abstracted as 𝐺 = (𝑁, 𝐴, 𝑀), where 𝑁 is the set 
of nodes, 𝐴  is the set of paths, and 𝑀  is the set of 
transportation modes. 

 
Fig. 1. Sketch of a Multimodal Transport Logistics Network 

The rail consignment path optimization model for 
multimodal transport under transportation time uncertainty 
is as follows. 

Eq. (1) is the target function of the optimization model, 
and its ultimate goal is to search for a path scheme so that 
both objective functions are minimal. Eqs. (2) and (3) are 
the constraints in the optimization model. Eq. (2) is used 
to ensure that the searched path meets the assumptions and 
the transformation of the transport mode in the path node. 
Eq. (3) is the chance constraint condition for the time fuzzy 
parameter (Adriano et al., 2021) in the model. 

The objective function is: 

 

⎩
⎪
⎨

⎪
⎧

𝑚𝑖𝑛 𝑧ଵ = ∑ ∑ ∑ 𝑞 ⋅ 𝑐 ⋅ 𝑑 ⋅ 𝑥∈ெ∈ே∈ே

                + ∑ ∑ ∑ 𝑞 ⋅ 𝑟 ⋅ 𝑦∈ெ∈ெ∈ே

𝑚𝑖𝑛 𝑧ଶ = ∑ ∑ ∑ 𝑡
′

∈ெ∈ே∈ே

+ ∑ ∑ ∑ 𝑠
′

∈ெ∈ெ∈ே

+ ∑ ∑ ∑ 𝑤
′

∈ெ∈ெ∈ே

(1) 

The constraint is:
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∑ ∑ 𝑥∈ெ∈ே − ∑ ∑ 𝑥∈ெ∈ே = 1
∑ ∑ 𝑥∈ெ∈ே = ∑ ∑ 𝑥∈ெ∈ே ∀𝑗 ∈ 𝑁/(𝑜 ∪ 𝑑)

∑ ∑ 𝑥ௗ∈ெ∈ே − ∑ ∑ 𝑥ௗ∈ெ∈ே = 1

𝑢 − 𝑢 + 𝑛 ∑ 𝑥∈ெ ≤ 𝑛 − 1 ∀𝑖, 𝑗 ∈ 𝑁

𝑦 = ∑ 𝑥∈ே ⋅ ∑ 𝑥∈ே ∀𝑚 ≠ 𝑛, 𝑗 ∈ 𝑁

∑ ∑ 𝑥∈ெ∈ே ≤ 1 ∀𝑖 ∈ 𝑁

∑ ∑ 𝑦∈ெ∈ெ ≤ 1 ∀𝑖 ∈ 𝑁
𝑥 , 𝑦 = 0 ∀𝑖 ∈ 𝑁, 𝑚 ∈ 𝑀

𝑥 , 𝑦 ∈ {0,1} 𝑖, 𝑗 ∈ 𝑁 𝑚, 𝑛 ∈ 𝑀

 (2) 
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⎧∑ ∑ ∑ ቀ(1 − 𝛼ଵ)𝑡 + 𝛼ଵ𝑡ெቁ 𝑥∈ெ∈ே∈ே

+ ∑ ∑ ∑ ((1 − 𝛼ଵ)𝑠 + 𝛼ଵ𝑠ெ)𝑦∈ெ∈ே∈ே

              + ∑ ∑ ∑ ((1 − 𝛼ଵ)𝑤 + 𝛼ଵ𝑤ெ)𝑦∈ெ∈ே∈ே ≤ 𝑧ଶ

൫(1 − 𝛼ଶ)𝑡 + 𝛼ଶ𝑡ெ൯𝑥 ≤ 𝑡
′

൫(1 − 𝛼ଶ)𝑡 + 𝛼ଶ𝑡ெ൯𝑥 ≥ 𝑡
′

((1 − 𝛼ଶ)𝑠 + 𝛼ଶ𝑠ெ)𝑦 ≤ 𝑠
′

((1 − 𝛼ଶ)𝑠 + 𝛼ଶ𝑠ெ)𝑦 ≥ 𝑠
′

((1 − 𝛼ଶ)𝑤 + 𝛼ଶ𝑤ெ)𝑦 ≤ 𝑤
′

((1 − 𝛼ଶ)𝑤 + 𝛼ଶ𝑤ெ)𝑦 ≥ 𝑤
′

 (3) 

The meanings of symbols in these equations are shown in Table 1. 

Table 1. Meanings of Symbols in Eqs. (1), (2), and (3) 

Symbol Meaning 

𝑧ଵ The total consignment cost 

𝑧ଶ The total consignment time 

𝑞 The amount of goods to be consigned 

𝑐 The unit transportation cost of transportation mode 𝑚 

𝑑 The distance of goods from point 𝑖 to point 𝑗 via transportation mode 𝑚 

𝑟  The unit cost of goods to change from transportation mode 𝑚 to 𝑛 at point  𝑖 

𝑥 A decision variable that takes the value of 1 when the cargo travels from 
point 𝑖 to point 𝑗 via transport mode 𝑚 and 0 vice versa 

𝑦 A decision variable that takes the value of 1 when the transportation mode 
𝑚 is transformed to transportation mode 𝑛 at point 𝑖 and 0 vice versa,  

𝑜 and 𝑑
 

The origin and destination  

𝑢 
The serial number of the node 𝑖 arranged on the path according to the forward order 

𝑡 , 𝑡ெ , 𝑡 
The triangular fuzzy numbers of the time taken to transport the cargo from 
point 𝑖 to point 𝑗 via transport mode 𝑚 

𝑠 , 𝑠ெ , 𝑠𝑠 , 𝑠ெ , 𝑠 
The triangular fuzzy numbers of the time required for the cargo to change 
from transportation mode 𝑚 to transportation mode 𝑛 at point 𝑖 

𝑤 , 𝑤ெ , 𝑤 
The triangular fuzzy numbers of the time required for the cargo to waiting for 
changing from transportation mode 𝑚 to transportation mode 𝑛 at point 𝑖 

𝑡

′
, 𝑠

′
, 𝑤

′

 
The real number variables of the respective corresponding link time 

𝛼ଵ 
The confidence level of the objective function 

𝛼ଶ 
The confidence level of the chance constraint 

2.2. PSO-based Multimodal Transport Path Optimization 
The multimodal logistics network becomes a directed 
acyclic network diagram after abstraction. Optimizing the 
multimodal rail consignment path is equivalent to selecting 
a path from the directed acyclic network diagram that can 
minimize transportation costs and time. The multimodal 
transport path optimization studied in this paper takes into 
account the uncertainty of transport time, so the triangular 
fuzzy numbers of transport, transshipment, and 

transshipment waiting time (Paula et al., 2015) are used 
instead of the clear time in the optimization model, and the 
chance constraints of the fuzzy numbers are also introduced. 
The final multimodal transport path optimization model 
under time uncertainty has shown in the last subsection. 
The path optimization model under uncertainty can use the 
optimization algorithm to calculate the optimal path, and 
the objective function of the path optimization model under 
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uncertainty is the iterative convergence direction indication 
in the path optimization algorithm. 

The commonly used optimization algorithms are the 
genetic algorithm (Farshi et al., 2020), ant colony 
algorithm, and PSO algorithm, among which the PSO 
algorithm is simple to implement and can make the 
particles representing the path planning scheme gradually 

approach the optimal solution in the search space through 
iteration. In this paper, we choose the PSO algorithm to 
optimize the multimodal transport paths and improve it 
with crossover and mutation operations in the genetic 
algorithm to help it jump out of the locally optimal solution 
in the iterative process (Yu et al., 2018). The process of the 
improved PSO algorithm for planning a multimodal 
transport-based rail consignment path is shown in Fig. 2.

 
Fig. 2 The Basic Flow of the Improved PSO Algorithm

①  The population is initialized, including the initial 
velocity and position of the particles. The position of a 
particle means a path planning scheme.  The initialization 
of the PSO population means encoding the randomly 
generated path planning schemes, using the codes as the 
coordinates of the particle in the search space, and giving 
a random initial velocity. Taking the multimodal logistics 
sketch in Figure 1 as an example, there are three paths 
between two adjacent connected nodes: highway, railway, 
and waterway, but in order to facilitate the encoding of the 
planning scheme, the three paths between two nodes are 
combined into one path, and the problem of path planning 
becomes the selection of the transport mode in the path. 
The transport length and time of the path depend on the 
selected transport mode. Thus, the encoding of the 
particles for path planning is a matrix with a specification 
of a × 4, where 𝑎 represents the number of paths in the 
network. The connecting paths between two adjacent 
nodes are numbered. Every row in the matrix represents a 
connecting path of adjacent nodes. The first element of 
every row indicates the priority of the connecting path, the 
second element is the priority of selecting a highway in the 
path, the third element is the priority of selecting a railway 
in the path, and the fourth element is the priority of 
selecting waterway in the path. An encoding matrix 
represents a path-planning scheme. When transforming the 
encoding matrix into the positions of the particles, every 
priority within the path between every node is the 
coordinate of one axis of the particle, i.e., the dimension of 
the particle is 4a. Also, when initializing a population 
particle, its priority takes a value in the range of (0, 1], and 
if a transport mode does not exist within the path, the 
priority of that transport mode is set as 0. 

൦

0.124 0.111 0.147 0.214
0.369 0.547 0.025 0.126

⋯ ⋯ ⋯ ⋯
0.263 0.364 0.421 0.457

൪ 

Fig. 3. The Encoding Matrix in the Improved PSO Algorithm 

②  To calculate the population adaptation value, it is 
first necessary to decode the encoding matrix represented 
by the particles to obtain the path scheme given by the 
particles. The decoding of the encoding matrix is 
performed in the following way: starting from the starting 
node, the optimal path and the transportation mode are 

selected among the optional paths according to the priority 
so that the paths and nodes are gradually selected until the 
endpoint is reached. Then, according to the paths obtained 
by particle decoding, the fitness values of the particles are 
calculated by the objective function of the path 
optimization model in the last subsection. 

③ The position and velocity of the particles within the 
population are updated by Eq. (4) (Zhang et al., 2020): 

`ቐ
𝑣(𝑡 + 1) = 𝜛𝑣(𝑡) + 𝑐ଵ𝑟ଵ(𝑃(𝑡) − 𝑥(𝑡))

+𝑐ଶ𝑟ଶ(𝐺(𝑡) − 𝑥(𝑡))

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡 + 1)
 (4) 

where 𝑣(𝑡 + 1)  and 𝑥(𝑡 + 1)  are the velocity and 
position of particle 𝑖  after one iteration, 𝑣(𝑡)  and 𝑥(𝑡) 
are the velocity and position of particle 𝑖  before the 
iteration, 𝜛 is the inertia weight of the particle, 𝑐ଵ and 𝑐ଶ 
are the learning factors, 𝑟ଵ  and 𝑟ଶ  are random numbers 
between 0 and 1 (Dang et al., 2022), 𝑃(𝑡) is the optimal 
position experienced by particle 𝑖 (excluding particles that 
exceed the limit), and 𝐺(𝑡)  is the best position 
experienced by the particle population after excluding 
particles that exceed the limit. 

④ Crossover and mutation operations are performed on 
the particles within the population (Rizk-Allah et al., 2021). 
The crossover operation is to treat the 4a coordinate values of 
the particles as 4a gene fragments and randomly select twp 
particles according to the crossover probability to exchange 
the fragments of the same gene locus. The mutation operation 
is to randomly select a particle according to the mutation 
probability to change one of the gene fragments. 

⑤  Whether the algorithm reaches the termination 
condition is determined. If the termination condition is 
reached, the best particle in the population is decoded to 
get the path planning scheme; if the termination condition 
is not reached, it returns to step ② . The termination 
condition is that the number of iterations reaches the preset 
maximum number or the fitness value converges to 
stability. 

3. Simulation Analysis 

3.1. Example Setup 
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Some multimodal transport logistics in Henan province 
were taken as the subject for simulation experiments. There 
are ten nodes in the selected logistics network, and the 
connecting paths between the nodes are shown in Fig. 4. 
The connecting path is obtained by abstracting three paths, 
including the highway path, the railway path, and the 
waterway path, and the length and transport time of the path 
will change with the selected transport mode. A survey on 
this logistics network in Henan province found that the ten 
nodes in the case all had sufficient transshipment capacity. 
In this logistics network, node 1 was the starting point, and 
node 10 was the endpoint. The case studied in the 
simulation experiment was a transport task in this logistics 
network. In this transport task, the cargo quantity was 180 
tons, and there was no cargo splitting in the transport 
process, so it was suitable for the proposed multimodal 
transport path planning model. After investigating the 
logistics network in the case, the length and transport time 
of the paths of different transport modes is shown in Table 
1. In the transport time, the uncertainty of the transport time 
was represented by the triangular fuzzy number. The 
waiting time before transforming one transport mode to 
another at different time points and the transformation time 
is shown in Table 2. The uncertainty of the transshipment 
time was represented by the triangular fuzzy number. In 
addition, the cost of transforming the transport mode is as 
follows. The cost of changing highway transport to railway 
transport was USD 0.44 /ton, the cost of changing highway 
transport to waterway transport was USD 0.76 /ton, and the 
cost of changing railway transport to waterway transport 
was USD 2.90 /ton. 

1

2

3

4

5

6

7

8

9 10

 
Fig. 4. Logistics Network Of Multimodal Transport 

3.2. Algorithm Parameter Setting 

The multimodal rail consignment path was optimized by 
the genetic algorithm-improved PSO algorithm, and the 
corresponding parameters are as follows. The population 
size was set as 20, both learning factors were set as 1.5, the 
maximum number of iterations was 1500, the inertia weight 
was 0.8, the crossover probability was set as 0.5, the 
mutation probability was set as 0.1, and the maximum 
number of iterations was 500. 

To further verify the effectiveness of the improved 
PSO algorithm for path planning, it was compared with the 
traditional PSO algorithm and the genetic algorithm. 
Among them, the parameters of the traditional PSO 
algorithm are consistent with the improved PSO algorithm, 
except that there is no genetic operator. The parameters of 
the genetic algorithm are as follows. The population size 
was 20. The crossover probability of 0.5. The mutation 
probability was 0.1. The maximum number of iterations 
was 500. 

Table 2. Distance of Different Transportation Modes Within the Effective Path 

Inter-node paths Transportation distance/km Transportation time/h (𝑡 , 𝑡ெ , 𝑡) 

Highway Railway Waterway Highway Railway Waterway 

1→ 2 120 250 300 (3.1,3.5,4.1) (4.1,4.2,4.9) (6.1,6.2,6.8) 

1→ 5 235 125 420 (4.1,4.5,5.1) (3.3,3.6,4.2) (5.2,5.5,5.9) 

1→ 3 / 350 320 / (4.1,4.6,5.2) (7.1,7.5,7.9) 

2→ 4 980 560 740 (5.1,5.5,6.1) (6.1,6.3,6.7) (7.1,7.6,8.1) 

2→ 5 580 780 / (8.1,8.5,9.2) (7.1,7.3,7.5) / 

3→ 5 630 750 520 (4.3,4.5,5.0) (4.1,4.7,5.3) (6.1,6.5,6.9) 

3→ 6 550 / 470 (4.1,4.5,5.1) / (6.2,6.5,6.8) 

4→ 7 860 740 690 (8.2,8.7,9.1) (9.1,9.5,10.1) (5.1,5.5,6.1) 

5→ 7 740 650 / (4.1,4.8,5.4) (5.1,5.4,6.1) / 

5→ 8 1020 750 470 (4.1,4.6,5.3) (5.1,5.5,6.1) (3.1,3.5,4.1) 

6→ 8 860 790 450 (7.1,7.4,7.7) (3.1,3.5,4.1) (6.4,6.7,7.1) 

7→ 9 630 / 460 (7.1,7.5,8.3) / (4.1,4.7,5.5) 

7→ 10 960 750 670 (4.1,4.7,5.9) (7.1,7.5,8.1) (3.1,3.5,4.1) 

8→ 9 650 740 630 (6.1,6.5,7.1) (3.1,3.5,4.1) (7.1,7.5,8.1) 

8→ 10 / 940 750 / (8.1,8.4,8.8) (3.1,3.5,4.1) 

9→ 10 760 850 920 (8.1,8.7,9.3) (3.1,3.5,4.1) (9.1,9.5,10.1) 

Table 3. Waiting and Handling Time for the Transshipment of Goods in the Node 
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Nodes Transshipment waiting time (h)  
(𝑤 , 𝑤ெ , 𝑤) 

Handling time (h) (𝑠 , 𝑠ெ , 𝑠) 

Highway-
railway 

Highway-
waterway 

Railway-
waterway 

Highway-
railway 

Highway-
railway 

Railway-
waterway 

1 (0.5,0.8,1.1) (0.2,0.5,0.8) (0.3,0.7,1.2) (0.3,0.6,1.1) (0.5,0.8,1.5) (0.6,0.9,1.3) 

2 (0.3,0.6,1.1) (0.5,0.8,1.5) (0.6,0.9,1.3) (0.7,0.9,1.4) (0.5,0.8,1.3) (0.5,0.9,1.6) 

3 (0.7,0.9,1.4) (0.5,0.8,1.3) (0.5,0.9,1.6) (0.5,0.7,1.1) (0.5,0.8,1.5) (0.5,0.8,1.1) 

4 (0.4,0.8,1.2) (0.6,0.9,1.7) (0.5,0.8,1.1) (0.5,0.9,1.3) (0.2,0.4,1.0) (0.7,0.9,1.3) 

5 (0.5,0.8,1.5) (0.5,0.8,1.1) (0.5,0.7,1.1) (0.2,0.4,1.0) (0.7,0.9,1.3) (0.5,0.9,1.3) 

6 (0.2,0.4,1.0) (0.7,0.9,1.3) (0.5,0.9,1.3) (0.5,0.8,1.1) (0.1,0.5,1.0) (0.5,0.8,1.2) 

7 (0.5,0.8,1.1) (0.1,0.5,1.0) (0.5,0.8,1.2) (0.6,0.9,1.7) (0.5,0.8,1.5) (0.5,0.8,1.1) 

8 (0.6,0.9,1.7) (0.5,0.8,1.5) (0.5,0.8,1.1) (0.2,0.4,1.0) (0.7,0.9,1.3) (0.5,0.9,1.3) 

9 (0.5,0.8,1.1) (0.5,0.9,1.6) (0.7,0.9,1.3) (0.7,0.9,1.4) (0.5,0.8,1.3) (0.5,0.9,1.6) 

10 (0.3,0.7,1.2) (0.5,0.8,1.1) (0.6,0.9,1.7) (0.6,0.9,1.7) (0.5,0.8,1.5) (0.5,0.8,1.1) 

In addition to comparing the performance of improved 
PSO, conventional PSO, and genetic algorithms, this paper 
also compared the multimodal rail consignment path 
planned by the improved PSO algorithm with the rail 
consignment path without multimodal transport, which 
only adopted railway transportation mode and was 
optimized by the improved PSO algorithm. 

In the optimization model of multimodal transport-based 
rail consignment under logistics time uncertainty, the freight 
volume was set as 180 tons. The confidence level in the 
objective function and chance constraint function within the 
optimization model were: 𝛼ଵ = 0.9, 𝛼ଶ = 0.8. 

3.3. Experimental Results 

Fig. 5 shows the iterative convergence curves during the 
optimization of the rail consignment path under uncertainty 
using the three path optimization algorithms. It was seen 
from Fig. 5 that as the number of iterations increased, the 
average fitness values of the paths planned by the three 
algorithms decreased and eventually converged to stability. 
Comparing the convergence curves of the three path 
optimization algorithms, it was seen intuitively that the 
improved PSO algorithm converged to stability faster, and 
the average fitness value of the population converged to 
stability after about 200 iterations; the traditional PSO 
algorithm converged relatively slowly, reaching stability 
after about 240 iterations, and the average fitness value at 
stabilization was slightly higher than that of the improved 
PSO algorithm; the genetic algorithm converged the 
slowest and converged to stability after about 400 iterations, 
and the average fitness value at stabilization was higher 
than that of the traditional PSO algorithm. 

Table 4 shows the planned paths for rail consignment 
logistics without multimodal transport and the paths under 

the three path optimization algorithms when multimodal 
transport was used and also shows the transportation cost 
and total time consumed for the corresponding paths. Some 
multimodal transport logistics in Henan province were 
taken as the subject for simulation experiments. There are 
ten nodes in the selected logistics network, and the 
connecting paths between the nodes are shown in Fig. 4. 
The connecting path is obtained by abstracting three paths, 
including the highway path, the railway path, and the 
waterway path, and the length and transport time of the path 
will change with the selected transport mode. A survey on 
this logistics network in Henan province found that the ten 
nodes in the case all had sufficient transshipment capacity. 
In this logistics network, node 1 was the starting point, and 
node 10 was the endpoint. The case studied in the 
simulation experiment was a transport task in this logistics 
network. In this transport task, the cargo quantity was 180 
tons, and there was no cargo splitting in the transport 
process, so it was suitable for the proposed multimodal 
transport path planning model. After investigating the 
logistics network in the case, the length and transport time 
of the paths of different transport modes is shown in Table 
1. In the transport time, the uncertainty of the transport time 
was represented by the triangular fuzzy number. The 
waiting time before transforming one transport mode to 
another at different time points and the transformation time 
is shown in Table 2. The uncertainty of the transshipment 
time was represented by the triangular fuzzy number. In 
addition, the cost of transforming the transport mode is as 
follows. The cost of changing highway transport to railway 
transport was USD 0.44 /ton, the cost of changing highway 
transport to waterway transport was USD 0.76 /ton, and the 
cost of changing railway transport to waterway transport 
was USD 2.90 /ton.
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Fig. 5. Convergence Curves of Three Path Optimization Algorithms 

Table 4. Paths Planned by Single Rail Consignment, Paths Planned by Three Algorithms under Multimodal Transport, 
and the Path Of The Actual Case 

 Single rail 
consignment 

Genetic 
algorithm 

Traditional PSO 
algorithm 

Improved PSO 
algorithm 

The actual case 

Planned path ① ② ⑤ ⑦ ⑨ ⑩  ① ② ④ ⑦ ⑨ ⑩  ① ③ ⑤ ⑧ ⑨ ⑩  ①⑤⑦⑩ ①②⑤⑧⑨⑩ 

Shipping method Railway Railway-
waterway-
railway-

waterway-
railway 

Railway-
highway-
railway-
railway-
highway 

Railway-
railway-

waterway 

Highway-
railway-

waterway-
waterway-

railway 

Total transportation 
cost/ten thousand USD 

80.12 42.36 26.45 22.34 9.01 

Total transport time/h 52.5 35.6 24.3 23.4 42.3 

The comparison between the path of the single rail 
consignment and the paths obtained by three algorithms 
suggested that compared to the path of the single rail 
consignment, the paths of the multimodal transport-based 
rail consignment were less in terms of transportation cost 
and time.  Among the three path optimization algorithms 
for multimodal transport, the path obtained by the genetic 
algorithm cost the most and took the longest time, followed 
by the traditional PSO algorithm, and the path obtained by 
the improved PSO algorithm consumed the least 
transportation cost and time. 

4. Discussion 

For people engaged in the logistics industry, logistics costs 
and time should be minimized. Traditional logistics 
transportation uses a single means of transport, limiting the 
volume of goods transported and the path. In order to make 
more choices in logistics path planning, multiple 
transportation modes are combined to form multimodal 
logistics. Compared with the traditional path planning of 
single railway logistics, the path planning of multimodal 
transportation is more diverse in terms of path selection, 
i.e., the candidate paths are greatly increased. In this paper, 
in order to quickly plan the multimodal transport paths, the 
PSO algorithm improved by the genetic algorithm was 
used to plan the paths, and triangular fuzzy numbers were 
introduced to reflect the uncertainty of transport time and 
transport mode transformation time when building the 

multimodal transport path planning model, so that the path 
planning model was relatively close to the actual situation. 
Finally, a cargo transport task in the multimodal logistics 
in Henan province was used as a case for simulation 
experiments, and the improved PSO algorithm was 
compared with the genetic and traditional PSO algorithms. 
The final results are shown above. 

Among the three algorithms for multimodal path 
planning, the improved PSO algorithm had the highest 
convergence speed, the PSO algorithm was the second, and 
the genetic algorithm was the lowest. The path fitness 
value of the improved PSO algorithm was the smallest 
after the convergence was stabilized. The reason is that the 
improved PSO algorithm used crossover and mutation 
operations of the genetic algorithm to adjust the particle 
coding. The mutation operation made the particles “jump” 
in the search space to get rid of the defect that the 
traditional PSO algorithm falls into the locally optimal 
solution in the iterative process. 

The path transportation costs and time obtained by the 
three path planning algorithms were compared, and they 
were also compared with the path of the single railway 
transport and the original planned path of the case. The 
results of the comparison suggested that the path of the 
single railway transport was not only the most expensive 
but also the most time-consuming, while the path of the 
case used multimodal transport to reduce the transport cost 
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and time by taking advantage of different transport modes. 
The paths calculated by the three path planning algorithms 
were less costly and time-consuming than the original path, 
which verified the effectiveness of the constructed 
multimodal path planning model. The comparison between 
the three path planning algorithms showed that the path 
obtained by the improved PSO algorithm had the lowest 
transportation cost and transportation time, which was 
because the PSO algorithm introduced with crossover and 
mutation operations made the particles get rid of the 
locally optimal solution by “jumping” as much as possible. 

5. Conclusion 

This paper firstly established a multimodal rail 
consignment path optimization model under transportation 
time uncertainty, then optimized the path and transportation 
mode with the PSO algorithm according to the path 
optimization model, improved the PSO algorithm with the 
genetic algorithm to avoid falling into the locally optimal 
solution, conducted simulation experiments on the 
improved PSO algorithm, and compared it with the 
traditional PSO and genetic algorithms. The results 
demonstrated that the improved PSO algorithm converged 
to stability faster when searching the optimal path, and the 
fitness value after stabilization was the smallest; the paths 
obtained by the three path optimization algorithms were 
more excellent than the path of the single rail consignment 
and the original path of the case, and the transportation cost 
and time of the path obtained by the improved PSO 
algorithm was the smallest. 

In this paper, the triangular fuzzy number was 
introduced in the process of constructing the path-planning 
model of multimodal transportation, so the time parameter 
in the path-planning model was uncertain, which made the 
constructed model close to the actual situation, and the 
path-planning model was solved by using the improved 
PSO algorithm improved by the genetic algorithm. The 
work provides an effective reference for rational planning 
of multimodal transport paths. The limitation of this paper 
is that although the uncertainty of time is reflected by 
introducing triangular fuzzy numbers when constructing 
the path planning model, the uncertainty in the actual 
situation is not only time, and the actual logistics may not 
fully comply with the assumptions of the model, so the 
future research direction is to construct the model 
assumptions as close as possible to the actual situation and 
take into account the uncertainties other than time. 
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