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_________________________________________________________________________________________ 

Abstract: Assigning the right member to the most suitable position is key to the success of a project, and this task has been 
commonly executed by the project manager based on personal judgment in practice. This paper proposes a matching 
approach coupled with a revised Hungarian algorithm for optimizing the cost-time project assignment problem. The 
approach iteratively searches for the augmenting path concerning the current matching rather than solving the entire 
problem repeatedly. This unique feature greatly reduces the computation efforts. Problems of different sizes and sample 
ranges are simulated using the proposed technique and G&N’s method. Results show that the presented algorithm excels 
the previous approach in not only producing a lower bound for the project time but also in reaching the optimal solution 
using much less computing time. 

Keywords: project assignment, cost-minimizing, time-minimizing, matching. 

Copyright © Journal of Engineering, Project, and Production Management (EPPM-Journal). 
DOI 10.32738/JEPPM-2022-0019 
_________________________________________________________________________________________ 

1. Introduction

Deploying N resources to N tasks with various 
consumption rates is a common task in project 
management and is widely known as the assignment 
problem. Since budgeted resources are frequently limited 
in nature, it is necessary to allocate scarce resources 
efficiently. Therefore, the problem is traditionally 
formulated as assigning the optimal available resources to 
the most needed tasks so as to minimize and maximize the 
project cost and benefit, respectively. Problems of this type 
can be the deployment of N workers to N jobs, N machines 
to N operations, or N routes to N city buses (Shopov and 
Markova, 2021; Gabrovšek et al., 2020). Conventional 
treatment of the problem falls into one of the following 
categories: (1) cost-minimizing assignment problems 
(Barr et al. 1977; Hung and Rom, 1980), and (2) time 
minimizing assignment problems (Garfinkel, 1971). Cost-
oriented problems aim at finding the optimal assignment 
that minimizes the total project cost, whereas time-oriented 
problems focus on searching for the shortest duration when 
the total project time is of vital concern. Generalizations of 
the cost minimization and bottleneck assignment problems 
have been discussed in the literature (Fisher et al., 1986; 
Mazzola and Neebe, 1993; Mazzola, 1989; Mazzola and 
Neebe, 1988; Ross and Soland, 1977; Degroote et al., 2018; 

Karsu and Azizoğlu, 2012; Moussavi et al., 2018; Posta et 
al. 2012; Wu et al. 2018). 

The major characteristic of the project assignment 
problem is that the number of jobs and workers are 
identical, while it can be viewed as a special type of 
transportation problem in which the number of demands 
and suppliers are usually different. Therefore, the 
assignment problem is alternatively called the balanced 
transportation problem. Previous work used the 
transportation method, such as least cot, north-west corner, 
and Vogel’s approximation (Das et al., 2014; Palaniyappa, 
2016; Prasad and Singh, 2020) and the simplex method 
(Arsham and Kahn, 1989; Bulut, 2016) to solve the 
assignment problems, however, the high degree of 
degeneracy leads to the methods inefficient. The 
Hungarian method is another more efficient and widely 
applied technique to optimize the assignment (Munapo, 
2020; Khan et al., 2020; Gabrovšek et al., 2020). The 
above methods assume that the optimal assignment can be 
reached if the single objective of either total project cost or 
overall project time is minimized. Unfortunately, cost and 
time are frequently correlated. Thus, separating cost-
minimizing assignments from the time minimizing 
assignments does not correctly reflect the real situations. It 
is easily realized that the amount of cost needed and time 
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required to accomplish a task are highly interrelated with 
the difficulty of the job and the competency of the worker. 
It is actually a trade-off between time and cost.  

In 1993, Geetha and Nair (G&N’s) extended the 
assignment to a multi-objective problem associated with 
time and cost and proposed an algorithm to solve it. Due to 
the fact that the longer the project, the more effort the 
management must devote. Therefore, the supervisory cost 
per unit of time with respect to the project duration was 
introduced. The decision to be made is to minimize the 
total project cost plus the cost of supervising the most time-
consuming job. This study adopts G&N’s definition and 
proposes a more efficient approach for optimizing the 
project cost-time assignment problem. 

2. Problem Formulation 

Two major assumptions related to the project assignment 
problems are (1) each worker i is assigned exactly to one 
job j and each job j is assigned exactly to one worker i, and 
(2) all jobs are undertaken simultaneously. Thus the cost-
minimizing assignment can be stated as Eq. (1): 

 𝑀𝑖𝑛𝐶 = ∑ ∑ 𝐶௜௝
௡
௝ୀଵ

௡
௜ୀଵ 𝑋௜௝    (1) 

subject to  
 ∑ 𝑋௜௝ = 1௡

௝ୀଵ   for i=1, 2, ..., n 

 ∑ 𝑋௜௝ = 1௡
௜ୀଵ   for j=1, 2, ..., n 

 𝑋௜௝ = 1 if job j is assigned to worker i;  

= 0 otherwise. 
where Cij is the cost of assigning job j to worker i. 

Based on the assumptions mentioned above, the total 
project duration is defined as the minimum completion 
time required to complete all the jobs. Then the time 
minimizing assignment can be denoted as Eq. (2) (Geetha 
and Nair, 1993): 
 𝑀𝑖𝑛𝑇 = 𝑀𝑎𝑥൛𝑡௜௝|𝑥௜௝ = 1} (2) 
where tij is the time needed for the worker i to complete 

job j. 

A longer project time mostly implies a higher project 
cost due to extra costs incurred in association with various 
activities such as the supervisory efforts from the 
management and support from the indirect employee. It is, 
therefore, possible to convert the project duration into 
project cost by multiplying the suitable unit cost. Hence, 
the completion time of the tasks in this study can be added 
to the cost (Geetha and Nair, 1993). The problem then 
becomes finding the minimum value of the following 
problem shown as Eq. (3). 

 𝑀𝑖𝑛𝑍 = ∑ ∑ 𝐶௜௝
௡
௝ୀଵ

௡
௜ୀଵ 𝑋௜௝ + 𝑀𝑎𝑥൛𝑡௜௝|𝑥௜௝ = 1} (3) 

subject to 
 ∑ 𝑋௜௝ = 1௡

௝ୀଵ   for i = 1, 2, ..., n 

 ∑ 𝑋௜௝ = 1௡
௜ୀଵ   for j = 1, 2, ..., n 

 𝑋௜௝ = 1 if job j is assigned to worker i;  

 = 1 otherwise. 

3. The Proposed Algorithm 

The project assignment problem can be represented by a 
weighted bipartite matching graph G=(W, E) where W is a 
finite set of nodes or vertices and can be partitioned into two 
sets, V and U, and E has elements subsets of W of cardinality 
two called edges. A matching M of a graph G is a subset of 

the edges with the property that no two edges of M share the 
same node. Given a graph G=(V, E) the matching problem 
is to find a maximum matching M of G. Edges in M are 
called matched; the other edges are free. If [u, v] is a 
matched edge, then u is the mate of v; nodes that are not 
incident upon any matched edge are called exposed; the 
remaining nodes are matched. A path p=[u

1
, u

2
, ..., u

k
] is 

called alternating if the edges [u
1
, u

2
], [u

3
, u

4
], ..., [u

2j-1
, u

2j
], ... 

are free, whereas [u
2
, u

3
], [u

4
, u

5
], ..., [u

2j
, u

2j+1
], ... are 

matched. An alternating path p = [u
1
, u

2
, ..., u

k
] is called 

augmenting path if both u1 and u
k
 are exposed vertices. 

Vertices that lie on an alternating path starting with an 
exposed vertex and have an odd rank on this path are called 
outer, the other vertices with an even rank are called inner.  

In Fig. 1(a), p
2
= [v

1
, u

3
, v

5
, u

2
] is an augmenting path, 

where v
1
 and u

2
 are exposed vertices, [u

3
, v

5
] is a matched 

edge, v
5
 is a mate of u

3
, u

3
 is an inner vertex and v

5
 is an 

outer vertex, and [v
2
, u

2
] is a free edge. The significance of 

augmenting paths for the matching problem is due to the 
following facts (Papadimitriou and Steiglitz, 1982): 

 

(a) a bipartite graph        (b) an auxiliary graph 
Figure 1. An illustrative bipartite matching graph 

Lemma 1: Let P be the set of edges on an augmenting 
path p=[u1, u2, …, u2k] in a graph G with respect to the 
matching M, then M’=(M-P)∪(P-M) is a matching of 
cardinality ∣M∣+ 1. 

Lemma 2: A matching M in a graph G is maximum if and 
only if there is no augmenting path in G with respect to M. 

The breadth-first search can be applied to search 
augmenting paths in a graph, however, due to its special 
structure, we can simplify this searching technique by 
ignoring the odd-numbered levels and going directly from 
the outer vertices to new outer vertices. An auxiliary 
digraph, which contains just vertices of V can be 
constructed because only vertices of V can become outer 
vertices in alternating paths starting from V. The auxiliary 
graph corresponding to Fig. 1(a) is shown in Fig. 1(b), it is 
noted that breadth-first search of the auxiliary graph 
starting from the exposed node v1 obtains an augmenting 
path [v

1
, u

3
, v

5
, u

2
]. Furthermore, [v

1
, u

3
, v

5
, u

1
, v

6
, u

2
] is 

another augmenting path. 

For the assignment problem (completed weighted 
bipartite matching problem), we can formulate the primal 
problem (P) as Eq. 4: 

 (P) 𝑀𝑖𝑛 ∑ ∑ 𝐶௜௝
௡
௝ୀଵ

௡
௜ୀଵ 𝑋௜௝  (4) 

subject to  
 ∑ 𝑋௜௝

௡
௝ୀଵ  ∀𝑖 
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 ∑ 𝑋௜௝
௡
௜ୀଵ  ∀𝑗  

 𝑋௜௝ ≥ 0 ∀𝑖𝑗 

The corresponding dual problem (D) can be described 
as Eq. 5: 

 (D) 𝑀𝑎𝑥 ∑ 𝛼௜
௡
௜ୀଵ + ∑ 𝛽௜

௡
௝ୀଵ   (5) 

subject to 
𝛼௜ + 𝛽௝ ≥ 𝐶௜௝ 

where i and j are unrestricted, and Xij=1 means that the 
edge [vi, uj] is included in the matching, and xij=0 
otherwise. An initial feasible solution to the dual problem 
can be obtained as: 

 𝛼௜  = 0 

 𝛽௝ = min{Cij} 

In order to apply the primal-dual algorithm to the 
assignment problem, the corresponding restricted primal 
problem (RP) can be written as Eq. 6: 

 𝑀𝑖𝑛 ∑ 𝑥௜
௔௡

௜ୀଵ + ∑ 𝑦௝
௔௡

௝ୀଵ  (6) 
subject to: 

 𝑥௜௝ ≥ 0 if (𝑖, 𝑗) ∈ 𝐼𝐽 

 
∑ 𝑥௜௝

௡
௝ୀଵ + 𝑥௜

௔ = 1

   
∀𝑖

  𝑥௜௝ = 0 if IJji ),(  

 
∑ 𝑥௜௝

௡
௜ୀଵ + 𝑦௝

௔ = 1

   
∀𝑗

  𝑥௜
௔ ≥ 0, 𝑦௝

௔ ≥ 0 

where IJ is the admissible set defined as  
IJ = {(i, j)∣I + j = Cij}. 

Furthermore, replacing xi
a by  1 − ∑ 𝑋௜௝

௡
௝ୀଵ  and yj

a 
by 1 − ∑ 𝑋௜௝

௡
௝ୀଵ  , then RP is equivalent to RP’ shown as Eq. 7: 

 (RP’)  𝑀𝑎𝑥 ∑ 𝑥௜௝(௜,௝)∈ூ௃  (7) 

subject to 
 ∑ 𝑥௜௝

௡
௝ୀଵ ≤ 1 ∀𝑖 

 ∑ 𝑥௜௝
௡
௜ୀଵ = 1 ∀𝑗 

 𝑥௜௝ ≥ 0 if (𝑖, 𝑗) ∈ 𝐼𝐽 

 𝑥௜௝ = 0 if (𝑖, 𝑗) ∉ 𝐼𝐽 

The dual problem of RP’ (DRP’) is formulated as Eq. 8: 

  (DRP’) 𝑀𝑖𝑛 ∑ 𝛼௜ + ∑ 𝛽௝
௡
௝ୀଵ

௡
௜ୀଵ  (8) 

subject to 
𝛼௜ + 𝛽௝ ≥ 1 if  (𝑖, 𝑗) ∈ 𝐼𝐽 

𝛽௝ ≥ 0 
 𝛼௜ + 𝛽௝ ≥ 0 if (𝑖, 𝑗) ∉ 𝐼𝐽 

𝛼௜ ≥ 0 
It is easy to see that RP is an unweighted bipartite 

matching problem for the bipartite graph consisting of 
currently admissible matching edges. While searching for 
an augmenting path, it may be possible that no augmenting 
path is in the present set of admissible edges. Then, we 
shall change the dual variables i and j to make new edges 
admissible and resume the search for an augmenting path. 
To modify the dual variables, we need to calculate the 
following: 

𝜃ଵ =
1

2
𝑚𝑖𝑛

௜௝
{𝑐௜௝ − 𝛼௜ − 𝛽௝} 

The minimum is taken over all labeled nodes 𝑣௜ ∈ 𝑉 
and unlabeled nodes 𝑢௝ ∈ 𝑈, and the optimal solution is 
achieved when the bipartite graph is completely matched. 
Combining the matching technique with the Hungarian 
method (Papadimitriou and Steiglitz, 1982), the following 
algorithm can be derived to solve the bicriterion 
assignment problem. 

Algorithm: 

Step 0: Set iteration number k = 1, number of matches 
m = 0, n = V , 𝑄∗ = ∞,find the lower bound b for 

Z2=max൛𝑡௜௝ห𝑋௜௝ = 1ൟ, and construct the initial graph for 

the assignment. 

Step 1: construct an auxiliary graph for the bipartite 
graph of the assignment problem using the Hungarian 
method.  

Step 2: find an augmenting path then go to step 4, 
otherwise go to Step 3. 

Step 3: modify the auxiliary graph, go to step 2. 

Step 4: a new match is found, set m = m + 1. If m = n 
then go to step 5, otherwise go to step 1. 

Step 5: a feasible solution is found, let 𝑍ଵ
௞ =

∑ ∑ 𝐶௜௝
௡
௝ୀଵ

௡
௜ୀଵ 𝑋௜௝ , 𝑍ଶ

௞ = 𝑚𝑎𝑥{ 𝑡௜௝ห𝑋௜௝ = 1} ,𝑄௞ = 𝑄ଵ
௞ +

𝑍ଶ
௞ . If 𝑄௞ < 𝑄∗  then set 𝑋∗ = 𝑋௞, 𝑄∗ = 𝑄௞ , 𝑍ଵ

∗ =
𝑍ଵ

௞ , 𝑍ଶ
∗ = 𝑍ଶ

௞,go to step 6. Otherwise, if𝑍ଵ
௞ ≥ 𝑄∗ − 𝑏, then 

stop, in this case, X* is an optimal solution, and Q* is the 
optimal value. 

Step 6: Revise Cijs’ as follow: 

𝐶௜௝ = ቊ
𝐶௜௝          𝑖𝑓    𝑡௜௝< 𝑍ଶ

௞

∞            𝑖𝑓   𝑡௜௝ ≥ 𝑍ଶ
௞
 

Step 7: Remove all arcs (i, j) of the bipartite graph for 
which 𝐶௜௝ = ∞. Set m = m - matches removed; set k = k 
+ 1 and go to Step 1. 

Note that the lower bound b of time is obtained using 
the procedures listed below. Let 𝑟௜ = 𝑚𝑖𝑛

௜
{𝑡௜௝} , 𝑐௝ =

𝑚𝑖𝑛
௝

{𝑡௜௝}, 𝑟 = 𝑚𝑎𝑥
௜

{𝑟௜}, 𝑐 = 𝑚𝑎𝑥
௝

{𝑐௝}, then b = max {r, c}. 

 It can be seen that, compared to previous work by 
G&N, a better value of lower bound can be generated, 
which results in the reduction of the feasible set and the 
searching time. Step 7 in the proposed algorithm will be 
performed at most n2 times and the complexity of the 
Hungarian Method utilized in the algorithm is O(n3). 
Hence the complexity of the proposed algorithm will be 
O(n5) for the worst case. However, in the general case, the 
performance of the algorithm will be better than O(n5). 

4. Illustrative Example 

The algorithm proposed is applied to find the optimal 
cost-time assignment problem given in Table 1 (Mazzola 
and Neebe, 1993). Apparently, six jobs are to be assigned 
to 6 workers with different costs and time. To clearly 
demonstrate the solution processes of the algorithm, the 
problem is solved step by step with the matching graph 
depicted (see Table 2). 
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Table 1. The cost-time assignment problem 

 
Job j 

1 2 3 4 5 6 

W
or

ke
r 

i 
 

1 
Cij 6 3 5 8 10 6 

tij 4 20 9 3 8 9 

2 
Cij 6 4 6 5 9 8 

tij 6 18 8 7 17 8 

3 
Cij 11 7 4 8 3 2 

tij 2 8 20 7 15 7 

4 
Cij 9 10 8 6 10 4 

tij 12 13 14 6 9 10 

5 
Cij 4 6 7 9 8 7 

tij 9 8 7 14 5 9 

6 
Cij 3 5 11 10 12 8 

tij 17 13 3 4 13 7 

In table 2, * sign indicates a labeled but unmatched 

node, 𝟑
~

 is a possible matching edge (admissible edge); 3 
is a matched edge. Moreover, in the column of the label, 
-1 means a starting node, and 0 means unlabeled. In the 
column of exposed, 0 implies no exposed node connected. 
Slack is computed as slack[uj]=min{Cij-i-j}, nhbor[uj] 
is the particular labeled vertex vi with which slack[uj] is 
achieved, and match[uj] is the particular vertex vi matches 
with uj. In the bipartite graph below the tables, ● is an 
unmatched node, and ○ is a matched node; a bold line 
represents a matched edge, and a plain line is an 
admissible edge. 

Table 2. Solution processes 

(a) stage 1 

 1 2 3 4 5 6  exposed label 

1 6 3 5 8 10 6 0 0 0 

2 6 4 6 5 9 8 0 0 0 

3 11 7 4 8 3
~

 2
~

 0 5 0 

* 4 9 10 8 6 10 4 0 0 -1 

* 5 4 6 7 9 8 7 0 0 -1 

6 3 5 11 10 12 8 0 0 0 

 3.0 3.0 4.0 5.0 3.0 2.0 

 

slack 1.0 3.0 3.0 1.0 5.0 2.0 

nhbor 5 5 5 4 5 4 

match 2 4 3 0 0 1 

(b) stage 2 

 1 2 3 4 5 6  exposed label 

1 6 3 5 8 10 6 -0.5 0 0 

 v    2 6 4 6 5 9 8 -0.5 0 4 

3 11 7 4 8 3
~

 2
~
 -0.5 5 0 

* 4 9 10 8 6
~

 10 4 -0.5 0 -1 

* 5 4
~

 6 7 9 8 7 -0.5 0 -1 

 v    6 3 5 11 10 12 8 -0.5 0 5 

 3.5 3.5 4.5 5.5 3.5 2.5  

slack 0.0 1.0 2.0 0.0 4.0 1.0 

nhbor 5 2 2 2 5 4 

match 2 4 3 0 0 1 

v: labeled node and matched 

(c) stage 3 

 1 2 3 4 5 6  exposed label 

v    1 6 3 5 8 10 6 -
1.0 

0 2 

 v   2 6 4
~

 6 5 9 8 0.0 0 4 

3 11 7 4 8 3
~

 2
~
 

-
1.0 

5 0 

* 4 9 10 8 6
~

 10 4
~

 1.0 0 -1 

* 5 4
~

 6 7 9 8 7 1.0 0 -1 

 v   6 3 5 11 10 12 8 
-

0.5 
0 5 

 3.0 4.0 5.0 5.0 4.0 3.0  

slack       

nhbor       

match 2 4 3 0 0 1 

An augmenting path [v4, u6] is found. 

(d) stage 4 

 1 2 3 4 5 6  exposed label 

1 6 3 5 8 10 6 -1.0 0 2 

 2 6 4
~

 6 5 9 8 0.0 0 4 

3 11 7 4 8 3
~

 2
~
 -1.0 5 0 

 4 9 10 8 6
~

 10 4 1.0 0 0 

*5 4
~

 6 7 9 8 7 1.0 0 -1 

 v    6 3 5 11 10 12 8 0.0 0 5 

 3.0 4.0 5.0 5.0 4.0 3.0  

slack 0.0 1.0 1.0 3.0 3.0 3.0 

nhbor 5 5 5 5 5 5 

match 2 4 3 6 0 1  
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(e) stage 5 

 1 2 3 4 5 6  exposed label 

v   1 6 3 5 8 10 6 -1.0 0 2 

v   2 6 4
~

 6 5 9 8 0.0 0 4 

v   3 11 7 4 8 3
~

 2
~
 -1.0 5 0 

v   4 9 10 8 6
~

 10 4 1.0 0 0 

*5 4
~

 6
~

 7
~

 9 8 7 1.0 0 -1 

 v    6 3 5
~

 11 10 12 8 0.0 0 5 

 2.5 4.5 5.5 5.5 4.5 3.5    

slack          

nhbor          

match 2 4 3 6 0 1    

An augmenting path [v5, u3, v3, u5] is found 

(f) stage 6 

 1 2 3 4 5 6  exposed label 

1 6 3 5 8 10 6 -1.5   

2 6 4
~

 6 5 9 8 -0.5   

3 11 7 4 8 3 2
~
 -1.5   

4 9 10 8 6
~

 10 4 0.5   

5 4
~

 6
~

 7 9 8 7 1.5   

 6 3 5
~

 11 10 12 8 0.5   

 2.5 4.5 5.5 5.5 4.5 3.5    

slack          

nhbor          

match 2 4 3 6 3 1    

X
1
 = {x12, x24, x35, x46, x53, x61},  

Z1
1

 = 25, Z2
1

 = 20,  

Z1
1

+ Z2
1

= 45, Q* = 45 

(g) stage 7 

 1 2 3 4 5 6  exposed label 

* 1 6   5 8 10 6 -1.5 0 -1 

2 6 4
~

 6 5 9 8 -0.5 2 0 

3 11 7   8 3 2
~
 -1.5 0 0 

4 9 10 8 6
~

 10 4 0.5 0 0 

5 4
~

 6
~

 7 9 8 7 1.5 2 0 

 6 3 5
~

 11 10 12 8 0.5 2 0 

 2.5 4.5 5.5 5.5 4.5 3.5 

 

slack 5.0   1.0 4.0 7.0 4.0 

nhbor       

match 1 1 1 1 1 1 

(h) stage 8 

 1 2 3 4 5 6  exposed label 

* 1 6 3 5
~

 8 10 6 -1.0 0 -1 

2 6 4
~

 6 5 9 8 -1.0 2 0 

3 11 7 4 8 3 2
~
 -2.0 0 0 

4 9 10 8 6 10 4 0,0 0 0 

5 4
~

 6
~

 7 9 8 7 1,0 2 1 

6 3 5
~

 11 10 12 8 0,0 2 5 

 3.0 5.0 6.0 6.0 5.0 4.0    

slack          

nhbor          

match 3 4 5 6 2 1    

An augmenting path [v1, u3, v5, u2] is found 

(i) final stage 

 1 2 3 4 5 6  exposed label 

1 6   5 8 10 6 -0.5 0 0 

2 6
~

   6
~

 5   8 -0.5 0 4 

3 11 7   8   2
~
 -0.5 5 0 

4 9     6 10 4 -0.5 0 -1 

5 4 6
~

 7   8
~

 7 -0.5 0 -1 

6     11
~

 10
~

   8 -0.5 0 5 

 3.5 3.5 4.5 5.5 3.5 2.5    

slack 0.0 1.0 2.0 0.0 4.0 1.0    

nhbor 5 2 2 2 5 4    

match 2 4 3 0 0 1    

X
5
 = {x13, x24, x32, x45, x51, x66},  

Z1
5

 = 39, Z2
5

 = 9, Z1
5

+ Z2
5

= 48, Q* = 41. 

For simplicity, the detailed calculation procedures of 
the Hungarian method will be omitted.  In the first stage 
shown in Table 2(a), set i = 0, 𝛽௝ = 𝑚𝑖𝑛

௜
{𝐶௜௝}, compute 

the lower bound of time b, and mark the admissible edges 
for matching, we can obtain four matches, [v1, u2], [v2, 

u4], [v3, u3] and [v6, u1].  Unmatched nodes v4 and v5 are 

labeled with -1.  Node v3 can be connected to the exposed 
nodes u5 and u6, u5 is selected in this case. Because no 
augmenting path is possible, go to Step 3. The smallest 
nonzero slack in Table 2(a) is 1.0, therefore, 1 = 0.5. The 

revised Table 2(b) shows that edges [v4, u4] and [v5, u1] 

can be added to the graph and no edges are deleted, go to 
Step 3 with 1 = 0.5, the results are shown in Table 2(c). 

Clearly, edges [v2, u2] and [v4, u6] can be added to the 
graph and no edges are deleted. In this stage, an 
augmenting path [v4, u6] is found. Thus graph is modified 

as Table 2(d). Since no augmenting path is possible, go to 
Step 3 with 1 = 0.5. The new graph in Table 2(e) shows 

that edges [v5, u2], [v5, u3], and [v6, u2] can be added to 
the graph and no edges are deleted, an augmenting path [v5, 
u3, v3, u5] is found here. The graph is changed to Table 2(f). 
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A local optimal is obtained with cost 𝑍ଵ
ଵ = 25, 𝑍ଶ

ଵ = 20 
and Q1 = 45. Therefore, let X* = X1, Q* = Q1 = 45, 𝑍ଵ

∗ =
 𝑍ଵ

ଵ = 25, and 𝑍ଶ
∗ =  𝑍ଶ

ଵ = 20. Go to Step 1 and revise Cijs 
for the graph. Note that the edges [v1, u2] (matched edge) 
and [v3, u3] (admissible edge) are removed, the new graph 

is shown in Table 2 (g). Because no augmenting path is 
possible, go to step 3 with 1 = 0.5. The modified results 

are shown in table 2(h), and the edge [v1, u3] is added. 

Similar procedures can be carried out until the global 
solution is obtained. The results of the last stage are shown 
in Table 2(i), which shows that 𝑍ଵ

ହ = 39 , 𝑍ଶ
ହ = 39 and 

𝑄ହ = 48. The local optimal found in each iteration is listed 
in table 3, where b=8, and ＃ indicates global optimal. 
Note that the global optimal is obtained in iteration 3. 

Table 3. The local optimal found in each stage 

k Solution ijx  kZ1  kZ2  kk ZZ 21   *Q  bQZ k  *
1  

1 12, 24, 35, 46, 53, 61 25 20 45 45 No 

2 13, 24, 35, 46, 52, 61 26 17 43 43 No 

3 13, 24, 35, 46, 51, 62 26 15 41 ＃41 No 

4 13, 24, 36, 45, 51, 62 31 13 44 41 No 

5 13, 24, 32, 45, 51, 66 39 9 48 41 Yes 

Table 4. Comparison of the results 

Range n 
G&N method  Proposed method 

C T Z b CPU  C T Z b CPU 

lower 10 119 19 138 11 0.99  119 19 138 13 0.55 

= 10 15 176 20 196 11 3.96  176 20 196 13 1.15 

 20 224 20 244 11 7.36  224 20 244 12 2.64 

upper 25 277 20 297 11 17.52  277 20 297 12 4.34 

= 20 30 334 20 354 11 24.93  334 20 354 12 9.07 

 35 386 20 406 11 28.51  386 20 406 12 12.69 

 40 443 17 460 11 63.77  443 17 460 12 19.55 

lower 10 150 37 187 12 1.87  150 37 187 17 0.66 

= 10 15 211 38 249 12 5.49  211 38 249 19 1.49 

 20 248 39 287 12 16.59  248 39 287 15 4.12 

upper 25 304 40 344 12 41.30  304 40 344 16 7.09 

= 40 30 360 40 400 12 47.19  360 40 400 14 10.76 

 35 409 40 449 12 73.54  409 40 449 15 15.43 

 40 474 37 511 11 161.70  474 37 511 14 24.16 

lower 10 212 71 283 15 2.41  212 71 283 27 0.72 

= 10 15 283 78 361 14 11.26  283 78 361 30 1.81 

 20 299 77 376 14 20.92  299 77 376 21 5.06 

upper 25 367 69 436 12 28.89  367 69 436 22 7.15 

= 80 30 417 74 491 12 61.24  417 74 491 18 14.50 

 35 449 68 517 11 119.90  449 68 517 16 20.93 

 40 509 78 587 11 252.90  509 78 587 16 34.06 

 

To further verify the performance of the proposed 
algorithm, various sizes of the assignment matrices with 10, 
15, 20, 25, 30, 35 and 40 nodes are randomly generated and 
solved by using the G&N method and the presented 
approach. Moreover, three kinds of sample range, namely, 
(min = 10, max = 20), (min = 10, max = 40) and (min = 10, 
max = 80), are assigned to the values of cost and time. A 
simulated program is written in Turbo C and runs on a 
personal computer, and results are shown in Table 4, where 
upper means maximum cost in the matrix, and lower 
means minimum cost in the matrix. CPU is the CPU time 
(seconds) required to reach an optimal solution, n is the 
number of jobs or the size of the problem (n jobs x n 
workers), C and T are the cost and time of the assignment, 
Z is the sum of C and T, and b is the lower bound of T. It 
can be seen that, compared to G&N’s method, the 
proposed approach optimizes the problems using much 
less CPU time in all tested examples, and the superiority 
becomes even obvious when the problem size increases. 
For instance, the proposed method requires almost only 13 % 
of the CPU time needed for G&N’s method to reach the 
optimal solution for large size problems. This is believed 
to be a great saving. In addition, the proposed method 
generates a larger b value than that of G&N’s method, this 
is advantageous because the feasible set of solutions can 
be significantly contracted, which leads to less computing 
time. Fig. 2 demonstrates the CPU time with the size of 
problems for the two methods. 

 
(a) CPU time for sample range (10, 20) 
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(b) CPU time for sample range (10, 40) 
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(c) CPU time for sample range (10, 80) 

Figure 2. CPU time for different sizes of problems 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 209-216 

214    Chang, D.T., Lin, H.H., Chen, S.H., and Wei, C.C. 



 

 

5. Conclusion 

A matching technique in conjunction with the revised 
Hungarian algorithm to solve the bicriterion assignment 
problem is proposed in this paper. The presented approach 
converts the assignment problem into a bipartite graph and 
then repeatedly searches for the augmenting path with 
respect to the current matching. Unlike previous work done 
by G&N, the matching approach solves the problem at 
each stage with respect to the former stage, instead of 
solving the entire problem over again. This advantage 
significantly increases the computation efficiency. A 
Turbo C program is written to solve the different sizes of 
randomly generated problems. The performance of the 
matching technique is proved to be much better than 
G&N’s method in all tested problems, the computation 
saving is found to increase with the size of problems. It is 
concluded that the proposed technique optimizes the 
bicriterion assignment problem efficiently and effectively. 
The limitation of the proposed method is that it may not 
guarantee an optimal solution due to its heuristic nature. 
Therefore, future research can be directed to the finding 
and verification of the global optimal solution. 
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