Abstract: The waste generation from old rubber tires has been increasing and causing environmental degradation with the escalation of vehicles number especially in the cities. Bitumen is extensively used in flexible pavement construction and as its manufacturing industries were still growing, the cost has not been much affordable. This study aimed at evaluating the possibility of a partial replacement of ordinary bitumen by tire rubber waste, with the purpose to reduce not only the amount of rubber wastes dispersed in the nature, but also the material cost, while keeping or improving the bitumen product performance. The study used rubber waste powder as partial replacement to ordinary bitumen by 5%, 10%, 15%, and 20% of its weight and, with adequate samples, properties of the bitumen product were investigated, after checking the standard quality of used bitumen 60/70 grade. It was established that more adequate results were achieved at 5% of replacement, which showed the penetration value of 61.66 tenths mm, the softening point value of 52.75°C, and the viscosity of 134 sec.

Regarding the cost estimation of this new bitumen, a cost reduction of around 5.3% was realized. Therefore, the use of rubber waste powder would contribute not only to the reduction of the quantity of respective waste in the environment, but also influence on the material affordability. The use of other grades of bitumen than 60/70, as well as the strength and durability performance may be a good scope for further studies.

Keywords: Bitumen product, heating, penetration, softening point, waste rubber tire, viscosity.
mixed with tire rubber waste powder, and the cost estimation of the new bitumen product. The specific objectives are the following, among others: to identify properties of bitumen and underline the weakness, to collect and prepare the tire rubber waste, to mix the ordinary bitumen with rubber wastes powder and test the new product, as well as to estimate its cost. The tests result like penetration, softening point and viscosity are used to confirm the quality of the newly manufactured bitumen. However, other investigations like on the strength and durability performance, or the use of another grade of bitumen may be a good area for further study. For a matter of consistency, in this study, the ordinary bitumen means standard or conventional bitumen, while bitumen product means bitumen mixed with rubber waste, under laboratory conditions.

2. Literature Review

Even if the scope is wide, already different studies have been carried out with waste rubber tires, either alone or with other waste materials to establish their influence on the conventional construction materials, especially when they are used as aggregates for concrete or asphalt. Waste tires have been used in both concrete and mortars as well as in asphalt mixtures, under different forms and applied methods (Oikonomou and Mavridou, 2009). During their study on the use of rubber crumb for preparation of asphalt-concrete mixtures, Ongarbaev et al. (2013) demonstrated that characteristics of prepared samples had improved and concluded that the respective application to road construction would allow decreasing the environmental pollution with industrial wastes. A study on asphalt concrete made with scrapped tire rubber established the improvement of the resistance to permanent deformation as well as to high temperatures (Gifo, 2017). In their overview study, Adewumi and Awoyera (2019) underlined numerous studies on the use of rubber wastes in concrete; they confirmed improvement of the mechanical properties, compared with conventional concrete, dispute the reported depreciation tendency. In their study about the use of tire rubber waste in different percentages as an additive in foam concrete, Mehrani et al. (2019) concluded that the optimum rubber content of 5% would give the highest workability and strength. Li et al. (2019) conducted a comprehensive review on utilisation and reuse of waste tire rubber in concrete as aggregates, and demonstrated how the mechanical properties of concrete, including compressive and flexural strengths, as well as water absorption of concrete, can change.

The use of waste plastic and waste rubber tires in flexible pavement may increase both the Marshal stability value and the density of the mix with comparison to 60/70 grade bitumen (Rokade, 2012). While investigating the effect of waste plastic and crumb rubber on physical properties of bitumen, among other conclusions, Chirag (2013) established that the properties of bitumen such as penetration, softening point and ductility were improved with the addition of the waste plastic and crumb rubber. Lo Presti (2013) conducted a literature review study on recycled tire rubber modified bitumen for road asphalt mixtures; dispute many advantages realized, he observed some technology struggle and offered some suggestions for its improvement. In his study, Magar (2014) investigated the modification of bitumen with 15% by weight of crumb rubber with varying sizes and gave recommended sizes to obtain the best results. During their review study on using crumb rubber in the reinforcement of asphalt pavement, Mashaan et al. (2014) confirmed that utilization of crumb rubber from scrap automobile tire was not only beneficial in terms of cost reduction but also had a less ecological impact in keeping the environment clean. Prasad and Sowmya (2015) also conducted a study on bituminous modification using waste plastic (PET) and crumb rubber and suggested that 6% modifiers by weight of bitumen would suitable for pavement stability and this use could solve the problem of environmental damage. During their study with the purpose to establish the good mix proportion for rubberized bitumen, Rupesh and Rajesh (2015) concluded that 12% of crumb rubber by weight of bitumen was more suitable for road pavement. The study on the effect of waste tires rubber in asphalt mix showed that the properties of rubber-asphalt mixture are improved in comparison with normal asphalt pavement and recommended an addition of 10% by bitumen weight (Yazan, 2016). The mix of VG-30 bitumen with waste rubber tires as a replacement of aggregates offered permissible material for bituminous road construction (Kumar and Rajakumara, 2016). The investigation on utilization of rubber waste in construction of flexible pavement by Deshmukh and Kshirsagar (2017) observed the improvement of bitumen properties such as penetration value, softening point test, ductility test. A study on bitumen modified with tire rubber powder (TR), waste cooking oil (WCO) and bagasse ash (BA), established that up to 20% of bitumen can be successfully replaced without affecting its performance (Junaid et al., 2019). The application of recycled waste rubber and waste plastic (WRP) into asphalt binder improved both the workability and mechanical properties, and enhanced environment protection (Liu et al., 2019). Finally, Alaa (2019) in his experimental study to show the possibility of tire rubber usage in sand soils, established its influence on the stress-strain and deformation behavior of the mixtures. All other related works but not reviewed in this study are also recognized.

This study investigated the performance of bitumen product with partial replacement by tire rubber waste powder, and estimated its affordability when the mixing process was conducted under laboratory conditions.

3. Materials and Methods

3.1. Methodology Description

The study objectives stated above, were achieved using a well-elaborated methodology. The available waste was checked regarding its quantity and dumping. Then followed the samples collection, treatment and cleaning to remove organic and inorganic impurities like grasses, mud, etc. The tire rubber waste was cut and heated, and then mixed with bitumen under partial replacement of 5%, 10%, 15%, and 20% bitumen weight. These percentages were selected as practical values to make more feasible the measurement of the portion. Laboratory tests including penetration, viscosity, and softening point were performed for both ordinary bitumen and bitumen product. The sites used to carry out different preparation works and tests were cleaned to be free from all impurities. The materials sources and preparation process are presented below.

3.2. Materials Used and Source

Ordinary bitumen: in this study, bitumen from UAE of 60/70 grade was used to investigate the impact of waste tire
rubber. Fig. 1 shows the UAE Bitumen while preparing the penetration samples.

Fig. 1. Bitumen sample preparation for a penetration test

Tires rubber waste: It was collected at one of the depository sites in Kigali city, managed by a local company called “GREENHOUSE COMPANY”. The site is shown in Fig. 2.

Fig. 2. Waste tires at Gitega collection site

Before its use, tire waste was treated to ensure accurate results are achieved. The preparation procedure is described as follows: the cleansing and washing, exposure to the atmosphere for removal of the moisture, cutting into small pieces, and their burning with butane flame until the yielding into black powder is completed. The Fig. 3 and Fig. 4 show the rubber waste burning and bitumen heating, respectively.

Fig. 3. Rubber waste burning

Fig. 4. Bitumen heating

3.3. Preparation of Bitumen and Its Mixing with Rubber Waste (Indian Roads Congress, 2002)

The 4 kg of bitumen in the semi-solid state is heated in a 5-litre capacity metal container at 160°C, until it turns into a fluid without any bubble, so that it can be easily removed from the container (Fig. 4). Then the burned tire rubber waste powder is added, gradually replacing bitumen with 0%, 5%, 10%, 15%, and 20% of its weight. The blend was mixed manually for about 4-5 minutes. The mixture was then heated at 160°C and the whole mass was stirred using a mechanical stirrer for about 20 minutes. Care was taken to maintain the temperature between 160°C - 170°C. The bitumen product was cooled to room temperature and suitably stored for testing.

3.4. Laboratory Tests (Bureau of Indian Standards (2007))

Penetration test: It measures the hardness or softness of bitumen by measuring the depth in tenths of a millimeter to which a standard loaded needle would penetrate vertically in 5 seconds. A grade of 60/70 bitumen means the penetration value is in the range 60 to 70 at standard test conditions. In this study, the penetration test was carried out on each sample of bitumen products where obtained data are analysed to establish the rubber powder percentage corresponding to a better penetration value. The materials used to carry out the test are standard needle, penetrometer apparatus, cans, heater, water, thermometer, kerosene, glycerin. The main tools used for penetration tests are shown in Fig. 5.

Fig. 5. Some apparatus for the penetrometer test.

(a) penetrometer; (b) penetration needles

Softening point test: The softening point test is used to measure and specify the temperature at which bituminous binders would soften. It represents a certain state of consistency. In this study, the softening point test was
carried out on each sample of the bitumen product to establish the percentage at which the product will provide more resistance to temperature action. The materials used to carry out the test are softening apparatus, pair of rings and balls, water, glycerin, metal plate, knives. Some of them are shown in Fig. 6.

![Fig. 6. Tools for softening test. (a) 600 ml glass container; (b) rings; (c) rings and steel ball](image)

Viscosity test: This test determines the dynamic viscosity of the bitumen. The viscosity is greatly influenced by temperature under which it is spread into the voids and it coats the aggregates. In this study, the viscosity test is carried out in order to establish the practical percentage at which bitumen product would provide better viscosity. Materials used are viscometer, thermometer, brookfield, glycerin, graduated cylinder, stopwatch. Some of these tools are shown in Fig. 7. The viscometer with bitumen samples should be plugged into the voltage source to raise the temperature up to 60°C.

![Fig. 7. Some of tools for viscosity test. (a) viscometer; (b) thermometer; (c) graduated cylinder; (d) lubricant](image)

3.5. Cost Estimation of the Modified Bitumen

The cost estimation was simply executed using the unit cost method, by considering the following factors: the unit cost for ordinary bitumen in the market, the bitumen quantity replaced, and the cost of rubber waste (if any).

All test results are presented in section 4.

4. Results and discussion

4.1. Penetration Test Results (in 1/10 mm)

The results for the test with ordinary bitumen are presented in Table 1.

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Reading 1</th>
<th>Reading 2</th>
<th>Reading 3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
<td>67</td>
<td>63</td>
<td>65.00</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>70</td>
<td>66</td>
<td>68.33</td>
</tr>
<tr>
<td>3</td>
<td>65</td>
<td>61</td>
<td>63</td>
<td>63.00</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>65.43</td>
<td></td>
</tr>
</tbody>
</table>

For bitumen product, the penetration test was conducted for samples prepared with partial replacement by 5%, 10%, 15%, and 20% of waste rubber tires, respectively. Three trials were conducted, and the average results are given in Table 2.

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>% of tire wastes in bitumen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>65.33</td>
</tr>
<tr>
<td>2</td>
<td>61.33</td>
</tr>
<tr>
<td>3</td>
<td>58.33</td>
</tr>
<tr>
<td>Average</td>
<td>61.66</td>
</tr>
</tbody>
</table>

4.2. Softening Test Results

The results from the softening point test show the temperature at which the ordinary bitumen should soften.

The results for test with ordinary bitumen are presented in Table 3.

<table>
<thead>
<tr>
<th>Final reading</th>
<th>Ball one</th>
<th>Ball two</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softening point °C</td>
<td>48.9</td>
<td>49.8</td>
<td>49.35</td>
</tr>
</tbody>
</table>

The results for the bitumen product are presented in Table 4.

4.3. Viscosity Test Results

For ordinary bitumen, results obtained in seconds are presented in Table 5.

Regarding the bitumen product, the respective results are given in Table 6.

4.4. Estimated Cost of the Bitumen Product

In this study, it was assumed that the tire rubber waste is obtained for free from the false dumping sites in nature. At the time of this study, the UAE bitumen quality 60/70 cost was varying between 272,000 and 317,410 RwF (Rwandan Franc) per 500 metric tons (500,000 litres). While proceeding as suggested, it is established that the cost of the bitumen product with 5% of rubber waste would vary from 258,460RwF to 301,540RwF.)
Table 4. Results for softening point test of bitumen product

<table>
<thead>
<tr>
<th>S/N</th>
<th>Softening point test for 5%</th>
<th>Softening point test for 10%</th>
<th>Softening point test for 15%</th>
<th>Softening point test for 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading</td>
<td>Ball 1</td>
<td>Ball 2</td>
<td>Ball 1</td>
<td>Ball 2</td>
</tr>
<tr>
<td>T°C</td>
<td>42.6</td>
<td>42.75</td>
<td>52.5</td>
<td>53.6</td>
</tr>
<tr>
<td>Average</td>
<td>52.75</td>
<td>53.05</td>
<td>56.15</td>
<td>58.15</td>
</tr>
</tbody>
</table>

Table 5. Data collection for viscosity test of ordinary bitumen

<table>
<thead>
<tr>
<th>Volume/ml</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/sec</td>
<td>124</td>
<td>136</td>
<td>142</td>
</tr>
</tbody>
</table>

Table 6. Viscosity test results for bitumen product

<table>
<thead>
<tr>
<th>Viscosity test for 5% of waste rubber tires</th>
<th>Volume/ml</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/sec</td>
<td>101</td>
<td>134</td>
<td>150</td>
<td>168</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Viscosity test for 10% of waste rubber tires</td>
<td>Volume/ml</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Time/sec</td>
<td>123</td>
<td>162</td>
<td>168</td>
<td>184</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Viscosity test for 15% of waste rubber tires</td>
<td>Volume/ml</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Time/sec</td>
<td>174</td>
<td>193</td>
<td>212</td>
<td>268</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>Viscosity test for 20% of waste rubber tires</td>
<td>Volume/ml</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>Time/sec</td>
<td>900</td>
<td>1140</td>
<td>1500</td>
<td>1680</td>
<td>1800</td>
<td></td>
</tr>
</tbody>
</table>

4.5. Analysis of Results

4.5.1. Penetration test results

The comparison was done between ordinary bitumen and bitumen product with 0%, 5%, 10%, 15%, and 20% of tire rubber waste. From the results shown in Table 1 and Table 2, it can be seen that the penetration value for ordinary bitumen was 65.43 mm, while the penetration value for bitumen product was gradually decreasing with an increase of rubber waste. It is worth to note that the lower penetration value means the higher strength of bitumen which makes a harder grade of asphalt and offers additional strength to the road structure. Fig. 8 shows the variation of penetration values in the function of the % of rubber waste.

4.5.2. Softening point test results

The results illustrated in Table 3 and Table 4 show that the softening point for ordinary bitumen found is 49.35°C, while the addition of tire rubber waste adversely affected the temperature by increasing the softening point. Fig. 9 shows the variation of softening temperature with % of tire rubber waste.

4.5.3. Viscosity test results

With regards to the viscosity, results illustrated in Table 5 and Table 6 show that the viscosity value in seconds at 60°C for 50 ml of ordinary bitumen was 124 sec. The addition of rubber waste in ordinary bitumen adversely affected the flow of bitumen by increasing the viscosity. The Fig.10 shows the variation of viscosity in seconds with increase in % of tire rubber waste.
The increase of viscosity value shows how the bitumen product sticks with the aggregates when used in asphalt preparation.

4.5.4. Cost estimations of the bitumen product and other advantages

The calculated cost of bitumen product shows a decrease of around 13,600RWF - 15,870RWF (around 20USD). This would mean that the replacement of bitumen by 5% of rubber wastes can reduce the cost of 500 m³ bitumen by 5.3%. Therefore, for a big quantity of works with bitumen application, the reduction of used bitumen as well as the decrease of tire rubber waste in the nature would be important.

4.6. Discussion

From the above analysis in section 4.5, the improvement of the bituminous properties with the addition of tire rubber waste rubber was observed. These results are in line with previous studies (Chirag, 2013; Rupesh and Rajesh, 2015; Gito, 2017; Yazan, 2016; Li et al. 2019). The bitumen product properties tested at 5% of tire rubber waste showed the following results: the penetration value, 61.66 in tenths mm, softening point, 52.75°C and viscosity, 134 sec. These results are in line with the AASHTO standards (AASHTO, 2014) which recommend that the penetration values of bitumen with grade 60/70 should be in the ranging of 60 and 70 tenths millimeter, the softening point values from 48 to 56°C, while its minimum viscosity should be 100 sec. Therefore, for the used bitumen 60/70 grade, this replacement of 5% should be recommended. From results on cost estimation of bitumen, it was shown that the extensive use of waste rubber tires in bitumen would not only make the respective construction relatively affordable, but also save the environment. This is also in line with some previous results (Ongarbaev et al., 2013; Mashaan et al., 2014).

5. Conclusion and Recommendation

The main objective of this study was to investigate the use and influence of tire rubber waste powder in bitumen products. It was confirmed that the quantity of rubber waste was increasing in nature due to the development of tire manufacturing industries and challenges regarding the respective waste disposal. Also, it was observed that while the application of bitumen in construction was increasing, the bitumen cost was not much affordable. While available studies have been considering rubber waste as aggregates and in addition to bitumen, this study used rubber waste powder as partial replacement to bitumen and checked properties of the modified bitumen. The penetration, viscosity and softening tests were conducted with ordinary and bitumen products with a replacement of 0%, 5%, 10%, 15%, and 20% by respective rubber waste. The established test results were in line with standards values. For the used bitumen of 60/70 grade, the study observed that penetration values were decreasing with an increase of % of rubber waste, and the standard value was achieved at 5% of replacement. Therefore, it was recommended that the replacement should be limited to 5% by weight of bitumen, in order to achieve the same grade. Regarding the cost estimation of bitumen, a cost reduction of around 5.3% was realized. Based on all those results, it is concluded that the application with the replacement of rubber waste powder in bitumen product would contribute not only to the gradual reduction of the quantity of respective waste in the environment, but also in some measures influence on the bitumen material affordability. The use of tire rubber waste powder can also improve the performance of bituminous flexible pavement. In order to protect the environment against inhuman gases from the burning of tire rubber waste, the use of incineration burning method is recommended. Finally, further studies either using other grades of bitumen than 60/70 or checking other bitumen properties like strength, durability, etc. are welcome.

Acknowledgments

The authors would like to sincerely thank the leadership of GREENHOUSE COMPANY for permission in the collection of tire rubber waste from their site. The Management of the University of Rwanda, College of Science and Technology is also acknowledged for all kinds of support provided during this study, especially the use of laboratory facilities.

References

Dr. Leopold Mbereyaho is a Senior Lecturer at the University of Rwanda, College of Science and Technology, in the Department of Civil, Environmental and Geomatics Engineering. He is a registered engineer as a corporate member of the Institute of Engineers Rwanda (IER). He is a Technical Committee member under Rwanda Standards Board.

Manzi Lewis is a graduate in Civil Engineering from University of Rwanda, College of Science and Technology, in the Department of Civil, Environmental and Geomatics Engineering. He is a registered engineer as a Graduate Engineer member of the Institute of Engineers Rwanda (IER). He is a Technical Committee member under Rwanda Standards Board.

Kamanzi Prince is graduated in civil Engineering from University of Rwanda, College of Science and Technology, in the Department of Civil, Environmental and Geomatics Engineering. Currently, he is a structural engineer at a local company, called EAACON, specialized in Architectural Design, urban Design and Water Sanitation, as well as in supervision.

Nizeyimana Bertin is a graduate in Civil Engineering from University of Rwanda, College of Science and Technology, in the Department of Civil, Environmental and Geomatics Engineering. Currently, he is a structural engineer at a local company, called EAACON, specialized in Architectural Design, urban Design and Water Sanitation, as well as in supervision.