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_________________________________________________________________________________________ 

Abstract: Learning curves in construction operations analysis is deemed as one of the main factors that determine the 
variation of on-site productivity and is always taken into account during the planning and estimation stage. This research 
attempts the assessment of learning curve models’ suitability for the effective analysis of the learning phenomenon for 
construction operations that are fairly complicated concerning a floating caisson fabrication process for a large-scale 
marine project, using productivity data. This paper investigates the role of published learning curve models (i.e. Straight-
line or Wright; Stanford "B"; Cubic; Piecewise or Stepwise; Exponential) by comparing their outcomes through the use 
of both unit and cumulative productivity data. There are two main research objectives: first, the model best fitting 
historical productivity data of construction activities that have been completed are investigated, while secondly, an 
attempt is made to determine which model better predicts future performance. The less actual construction data deviate 
from each model’s yielded results, the better their suitability. In the case of unit data, the cubic model fits better historical 
data, while in the case of future predictions, the Stanford “B” model provides better results. Respectively, the Cubic 
model yields better results when using cumulative data on historical data and the Straight-line model predicts in a more 
reliable fashion future performance Possible extensions could be developed in the area of future performance predictions, 
by adopting different data representation techniques (e.g. moving/exponential weighted average) or by including other 
(non-classic) learning curve models (e.g. DeJong, Knecht, hyperbolic models). 

Keywords: Caisson, construction productivity, learning curve models, learning curves, marine projects, repetitive 
activities, statistical analysis. 
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_________________________________________________________________________________________ 

1. Introduction

In project management, assessing and improving the 
productivity of construction activities is a fundamental 
challenge. The estimation of construction productivity 
takes into account several factors that reflect the 
managerial perspective and philosophy of the project 
personnel (Panas and Pantouvakis, 2010; Shan et al., 
2011). One of the basic factors that affect productivity is 
the repetitive nature of construction activities taking place 
in construction projects. Therefore, it has been observed 
that when executing repetitive construction activities (e.g. 

high-rise building construction) each subsequent 
production cycle may be improved form a productivity 
stance due to the learning phenomenon that is developed 
in relation to the resources that are deployed in the project 
(Thomas et al., 1986; Panas and Pantouvakis, 2014; 
Pellegrino and Costantino, 2018; Srour et al., 2018). In 
other words, the productivity of repetitive tasks is 
improved as the experience of the deployed crews is 
increased (Pellegrino et al., 2012). The required time 
(man-hours) for the completion of repetitive construction 
activities is decreased, as the repetitions increase, since (i) 
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the crews are familiarized with the nature of the works, (ii) 
the coordination of the mechanical equipment and the 
crews is improved, (iii) the project management discipline 
is enhanced, (iv) more efficient techniques and 
construction methods are implemented, (v) more effective 
logistics management methods are followed and (vi) the 
project scope is narrowed, thus limiting the need for 
additional corrective activities (Thomas et al., 1986; 
Zahran et al., 2016). Within that framework, the learning 
phenomenon or learning curve effect expresses the 
influence of the human factor, namely the contribution of 
the deployed crews’ skill and experience in construction 
productivity. 

Taking into account learning phenomena when 
studying construction productivity enhances the accuracy 
of time and cost management (Lutz et al., 1994; Ammar 
and Abdel-Maged, 2018), improves project control and 
programming (Pellegrino et al., 2012), as well as provides 
the required scientific evidence for claiming lost 
workhours (Thomas, 2009). The impact of the learning 
effect on labor productivity is graphically expressed by the 
learning curves, which are quantitatively analyzed by 
mathematical models (Pellegrino and Costantino, 2018) 
known as the learning curve models.  

However, learning curve studies have also been 
criticized for having several limitations such as 
oversimplification of the construction process and 
implementation of a one-dimensional research approach 
where the analysis is based on a single learning model to 
interpret the actual data (Jarkas and Horner, 2011; Jarkas, 
2016). More specifically, the vast majority of learning 
curve studies in construction uses the straight-line or 
Wright model, thus limiting the presented results’ scope 
and possibly ignoring the effect of other learning 
parameters on the investigated construction process. In 
that view, this research intends to conduct a comparative 
analysis of five (5) established and widely acceptable 
learning curve models with the intent to interpret a 
relatively complex construction process relating to the 
realization of a large-scale marine infrastructure project. 
The purpose is the examination of each model’s suitability 
to interpret historical productivity data and predict future 
performance, in order to provide project management 
executives with the necessary information to reach critical 
project decisions (e.g. increase/decrease of project 
resources deployment). It is, to the authors’ best 
knowledge, the first research attempt to scrutinize 
thoroughly learning theory concepts’ implementation of 
marine works from a productivity stance. 

2. Literature Review 

2.1. Learning Curve Theory 

The theory of learning curves stems from the aircraft 
industry where T.P. Wright was the first one to implement 
it in 1936 (Jarkas, 2016; Ugulu and Allen, 2018), when he 
developed the so-called "Wright model" (Srour et al., 
2018). The latter predicted productivity improvements due 
to crew skills based on acquired experience (Jarkas, 2016). 

In general, learning curves are used for the graphical 
representation of the period, the cost and/or the labour 
hours that are necessary in order to complete "sufficiently 
complex" construction operations (Everett and Farghal, 
1994). The learning curve theory suggests that the 
required time (labour hours) for the production of a single 

unit (e.g. a floor of a high-rise building) is incrementally 
decreasing as a percentage of the time that was demanded 
the production of the previous unit (UN, 1965; Jarkas and 
Horner, 2011). This percentage is called "learning rate" 
and is a characteristic variable for the extent of the 
learning phenomenon in single construction activity 
(Thomas et al., 1986). From a mathematical point of view, 
the learning rate coincides with the inclination of the 
learning curve. The learning phenomenon becomes more 
intense as the value of the learning rate is reduced, since 
each subsequent production cycle is a smaller percentage 
of the time required for the previous production cycle. For 
instance, when the learning rate equals 80%, then the 
required labour-hours for the production of a single unit is 
20% less than the time needed for the production of the 
previous unit (Pellegrino et al., 2012). If an activity 
presents a learning rate equal to 100%, then no learning 
phenomenon is developed for that specific task (Lutz et 
al., 1994; Jarkas, 2016). 

In principle, a learning curve, when plotted on 
logarithmic coordinates, is characterized by three sections, 
as shown in Fig. 1 (Thomas et al., 1986; Lutz et al., 1994; 
Couto and Texeira, 2005). The first segment constitutes 
the operation-learning phase, during which the 
productivity is increased rapidly due to prior experience, 
as well as the crew’s familiarization with the project’s 
nature. The second segment represents that routine-
acquiring phase, during which incremental productivity 
enhancement is achieved through the improvement of 
construction methods and organization. The third and last 
segment is the "typical" or "standard" production phase, 
during which the learning rate is constant and no further 
learning phenomena are observed. Point xpl marks the 
completion of the “prior experience phase” and point xp2 
coincides with the beginning of the “leveling off” phase. 
The latter is also called the "standard production point" as 
no significant further improvement of productivity is 
observed beyond that point (Thomas et al., 1986). In Fig. 
1, unit X is produced after a specific amount (“Y”) of 
cumulative cost, man-hours or time. 

A fundamental prerequisite for the learning curve 
theory application is to execute repetitive, non-interrupted 
and non-differentiated activities, without delays due to 
shortages in materials delivery or specific guidelines 
(Thomas et al., 1986; Pellegrino et al., 2012).  

In terms of the applied analytical tools, most published 
research in learning curve productivity analysis adopts the 
statistical approach for the elaboration of field data 
(Thomas et al., 1986; Everett and Farghal, 1997; Couto 
and Texeira, 2005; Pellegrino et al., 2012; Ammar and 
Samy, 2015; Srour et al., 2016), thus the same approach 
has been implemented in the current research as well.  

Learning curve theory has been applied for modeling a 
variety of construction activities, such as (i) reinforced 
concrete buildings construction (Couto and Teixeira, 
2005; Pellegrino et al., 2012), (ii) off-site fabrication of 
pre-cast concrete piles (Hinze and Olbina, 2009), (iii) 
rebar steel and formwork installation (Jarkas, 2010; Jarkas 
and Horner, 2011; Nguyen and Nguyen, 2013, Khanh and 
Kim, 2014), (iv) cell-shaped concrete caissons 
construction (Panas and Pantouvakis, 2014), (v) gas 
pipelines construction (Ammar and Samy, 2015) and (vi) 
megaprojects construction (Everett and Farghal, 1997; 
Naresh and Jahren, 1999). 
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Fig. 1. Hypothetical Learning Curve (adopted from Thomas et al., 1986) 
 

Regardless of the specific applications, the greatest 
value of learning curves for managers and construction 
engineers is their predictive capability of future 
productivity, rather than the assessment of historical 
productivity data (Farghal and Everett, 1997). 

2.2. Data Representation 

The researchers, applying learning curve theory, have to 
represent learning curve data, using one of the following 
four techniques: i) unit data, ii) cumulative average data, 
iii) moving average and iv) exponentially weighted 
average (Everett and Farghal, 1997; Mályusz and Pém, 
2013; Ammar and Samy, 2015). A more detailed 
description follows in the next paragraph. 

Unit data represents the time or cost required to 
produce a unit (e.g. building floor) or to finalize a specific 
production process in relation to the unit number or cycle 
number. They replicate the exact result of a specific 
repetitive activity (Everett and Farghal, 1997; Ammar and 
Samy, 2015). Cumulative average data represents the 
average time or cost required to produce or complete a 
given number of units or cycles (Everett and Farghal, 
1997). It is computed as a fraction having as the numerator 
the total construction time or cost for a given number of 
units (or cycles) and as the denominator the completed 
units (or cycles) (Hinze and Olbina, 2009; Panas and 
Pantouvakis, 2014). A different version of the cumulative 
average is the moving average, which takes into account 
only recent data in the analysis (Everett and Farghal, 
1997). The time frame for the data inclusion depends on 
the analyst’s preference, leading either to the unit or 
cumulative data on each marginal situation (Mályusz and 
Pém, 2013). The integration of the most recent data and 
the previous average into one calculation results in the 
estimation of the exponentially weighted average. (Everett 
and Farghal, 1997). 

In the construction industry, most researchers use the 
cumulative average technique for developing prediction 
models. However, it should be noted that the same dataset 
is used for representing data from all presented 
techniques.. For more detailed information about data 
representation, the reader is referred to Everett and 
Farghal (1997) and Mályusz and Pém (2013). 

2.3. Learning Curve Models 

The learning curve phenomenon is studied through the use 
of specific mathematical models, which interpret the 
variation of productivity in relation to critical factors such 

as the number of units. These models quantify 
productivity improvements due to the execution of 
repetitious construction processes by either predicting or 
measuring performance (Jarkas, 2016). 

Although different learning curve models have been 
presented in published pertinent research (Arditi et al., 
2001; Wong et al., 2007; Srour et al., 2016), the majority 
of researchers (Thomas et al., 1986; Everett and Farghal, 
1994; Lutz et al., 1994; Couto and Teixeira, 2005; Ammar 
and Samy, 2015; Lee et al., 2015; Jarkas, 2016; Ammar 
and Abdel-Maged, 2018) refer to five main types of 
learning curve models as follows: (a) Straight-Line or 
Wright, (b) Stanford "B", (c) Cubic, (d) Piecewise or 
Stepwise and (e) Exponential models. These models are 
graphically represented in Fig. 2 and their detailed 
description follows in the next paragraphs.  

2.3.1. Straight-Line model (or Wright model) 

The Straight-line model was developed in 1936 by Wright 
and its purpose was the identification of cost affecting 
factors in the aircraft manufacturing sector (Hijazi et al., 
1992). Its name is derived from the fact that a plot on a 
logarithmic scale forms a straight line (Ammar and Abdel-
Maged, 2018; Lee et al., 2015). Due to its simplicity and 
its ability to provide acceptable precision (Srour et al., 
2018), it is most often selected by construction 
practitioners (Hinze and Olbina, 2009; Jarkas, 2016). The 
Straight-line model comes in two versions which are 
differentiated on whether they use the unit or cumulative 
average data. The mathematical equation is as follows 
(Glock et al., 2019):  

                                     Y = A ∗ Xି୬                                (1) 

where: Y= unit or cumulative average cost, man-hours or 
time to complete the Xth unit; A= cost, man-hours or time 
required for the first unit; Χ=unit number; n=slope of the 
logarithmic curve which takes values from zero to one. 
The Eq. (1) in its logarithmic format is presented below: 

                            logY = logA − n ∗ logX                       (2) 

The learning rate "L" (expressed as a percentage) can 
be derived from the slope of the logarithmic form as 
follow (Srour et al., 2016): 

                          L = 2ି୬ or n = −
୪୭

୪୭ଶ
                            (3) 

The main conceptual assumption in this model is that 
the learning rate does not fluctuate at all during the 
execution of the activity (Thomas et al., 1986). 
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Fig. 2. Shape of Various Learning Curve Models (adopted from Thomas et al., 1986) 
 

2.3.2. Stanford "B" model  

The Stanford Research Institute proposed the Stanford "B" 
model in the 1940s. It was developed in order to 
incorporate the prior experience to the learning curve 
model especially for large-scale projects and its results 
have been corroborated in the development and 
improvement activities of Boeing 707 (Jaber, 2016). It is 
considered as a modified Straight-line model which 
includes a factor "B" to represent the amount of prior 
experience and diminishes the learning curve (Badiru, 
1992; Srour et al., 2016). The mathematical equation and 
its logarithmic form are as follows (Srour et al., 2016): 

                                Y = A ∗ (X + B)ି୬                           (4) 

                          logY = logA − n ∗ log (X + B)             (5) 

where: Y=unit or cumulative average cost, man-hours or 
time to complete the Xth unit; A=cost, man-hours or time 
required for the first unit; Χ=unit number; B=factor 
describing the crew's prior experience. 

The Stanford "B" model is equivalent to the Straight-
line model if the deployed crew is not experienced in 
executing the project in hand.  The value of "B" fluctuates 
within the range of 0–10 (Gottlieb and Haugbølle, 2010; 
Mályusz and Pém, 2014). For inexperienced crews “B” is 
equal to zero and it can reach “B”>4 depending on the 
crews’ experience level (Thomas et al., 1986). 

2.3.3. Cubic model  

Carlson (1973) proposed the Cubic model and highlighted 
that the use of a multiple-curved slope can further enhance 
the Straight-line model (Hijazi et al., 1992). In this model, 
the learning rate is a variable factor with its values 
differentiating based on previous experience and 
productivity levelling-off towards the finalization phase. 
The mathematical expression is as follows (Thomas et al., 
1986). 

 logY = logA − b ∗ logX + C ∗ (logX)ଶ + D ∗ (logX)ଷ  (6) 

where: Y=unit or cumulative average cost, man-hours or 
time to complete the Xth unit; A=cost, man-hours or time 
required for the first unit; Χ=unit number; b=initial 
logarithmic slope at the first unit; C=quadratic factor; 
D=cubic factor. 

The first derivative of Eq. (6) gives the learning 
elasticity "a" for the Cubic model which can be expressed 
as (Karaoz and Albeni, 2005): 

        
ୢ୷

ୢ୶
= a = b + 2 ∗ C ∗ (logX) + 3 ∗ D ∗ (logX)ଶ     (7) 

Factors "C" and "D" are estimated using the Eq. (6) 
and Eq. (7) and knowing another data point along the 
curve.  

2.3.4. Piecewise or Stepwise model 

The Piecewise model is approximately similar to a linear 
version of the Cubic model distinguished in three 
segments, for which the learning rate has a different 
constant value. If plotted on a log-graph, three linear parts 
appear with different slopes (Everett and Farghal, 1994). 

These three distinct phases correspond to the three 
phases of the hypothetical learning curve (see Fig. 1). The 
calculation formula is presented below (Thomas et al., 
1986). 

logY = logA − nଵ ∗ logX − nଶ ∗ Jଵ ∗ ൫logX − logx୮ଵ൯ −

nଷ ∗ Jଶ ∗ ൫logX − logx୮ଶ൯                                             (8) 

where: Y=unit or cumulative average cost, man-hours or 
time to complete the Xth unit; A=cost, man-hours or time 
required for the first unit; Χ=unit number; n1=slope of the 
first segment; n2=additional slope of the second segment; 
J1=1 when X>xpl, 0 otherwise; n3=additional slope of the 
third segment; J2=1 when X>xp2, 0 otherwise; xp1=first 
point where the slope changes, usually in the operation-
learning phase (see Fig. 1); xp2=second point where the 
slope changes, the end of the routine-acquiring phase (see 
Fig. 1); Total slope = n1+ n2+ n3 

2.3.5. Exponential model 

The Exponential model was developed by the Norwegian 
Building Research Institute in 1960 (U.N., 1965). The 
main rule is that a partial segment of the cost or time 
required per unit should be considered constant and the 
rest may be diminished by 50% after a constant number of 
iterations. The mathematical equation is as follows 
(Zahran et al., 2016): 

                                 Y୳ = Y୳୪୲ +
ିଢ଼౫ౢ౪
ଶ∗ଡ଼

ୌൗ
                           (9) 
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where: Yu=unit cost, man-hours or time to complete the 
Xth unit; Yult =ultimate man-hours per unit at the end of 
routine-acquiring phase; A=cost, man-hours or time 
required for the first unit; Χ=unit number; H=constant 
named "Halving Factor". 

The minimum cost or productive time (expressed in 
man-hours) achieved at the final stage of the routine-
acquiring phase (Yult) must be known along with constant 
"H" which represents a "Halving Factor", namely to 
determine what amount of units can be diminished by 50% 
through repetition. There has been no evidence of a 
cumulative data learning model (Thomas et al., 1986). 

2.4. Caisson Construction Operations 

In principle, floating caissons are pre-cast concrete box-
shaped elements that are used in marine infrastructure 
projects and are constructed on floating dry docks (Panas 
and Pantouvakis, 2014). The slipforming construction 
method is used to construct them in a repetitive fashion.. 
The slipforming method is used to construct high-rise 
structures such as silos (Zayed et al., 2008). In the general 
case, the slipform method starts with the “slipform 
assembling phase”, goes on with the “slipform phase” and 
concludes with the “slipform dismantling phase” (see Fig. 
3).  

Sometimes, a situation can occur where the most 
suitable floating dock may not be available according to 
the project time schedule. As a result, the floating may not 
have sufficient bearing capacity to accommodate the 
finalization of the complete caisson at once on the floating 
dock. When that happens, the slipforming procedure is 
partly executed on the floating dock (Phase A) and then 
continued afloat (Phase B) up until the caisson has been 
fully constructed.  

3. Methodology  

3.1. Case Study Selection 

A large-scale marine project in Greece has been selected 
as a testbed for the present study. The investigated scope 
regards the construction of thirty-four (34) caissons 
fabricated via the slipform technique over eight months 
(January 2012 to August 2012). 

A number of reasons justified the selection of this 
project as the research case study: (a) caisson construction 
is an iterative and complex construction activity, hence 
fulfilling the prerequisites for the development of the 
learning phenomenon; (b) a sufficient number of data 

points expressed in workhours/activity’s output (more than 
1,700 on-site measurements) to yield robust and reliable 
learning curves. This project was also partially 
incorporated in the research of Panas and Pantouvakis 
(2014, 2018). 

3.2. Selected Activities 

Each batch for the caissons construction includes two 
items. The slipforming starts on the floating barge and 
stops at a height of +9.00m, due to weight capacity 
restrictions (so-called “Phase A”). Then the floating dock 
is submersed, the caissons are berthed along the quay and 
concreting is completed at a final elevation of +19.70m 
(so-called “Phase B”). The slipforming equipment is 
dismantled and re-assembled for the construction of the 
next two caissons. From a total of nineteen (19) activities 
(Pantouvakis and Panas, 2013) which are required for the 
construction of a caisson, only six (6) of them were 
studied, as follows: (a) Assembling, (b) Dismantling, (c) 
Initial Concreting (Phase A and B), as well as (d) Slipform 
(Phase A and B).  

The study focused on these activities because: (a) they 
are mainly labour-intensive and (b) they satisfy the 
criterion of being "sufficiently complex repetitive 
activities" (Thomas, 2009) which is the condition for the 
development of the learning phenomenon. Hence, only 
these activities were found complex enough, since the 
observed on-site productivity data for the rest did not 
present significant productivity variability. Lastly, for 
reasons of research completeness, the total construction 
process for each caisson comprising all nineteen activities 
(which represents a production cycle) was studied from a 
learning perspective.  

3.3. Learning Curve Models Investigation 

The five learning curve models were examined, so as to 
define the most optimum approach for the assessment of 
completed construction activities as well as to find the best 
solution for estimating future productivity values. The 
assessment criterion for the suitability is the deviation of 
the actual construction data from the predictions generated 
by each model. Although in construction settings it is 
often most convenient to use the cumulative average time, 
this research adopts both unit and cumulative average 
data, in order to provide a more robust research 
framework. Besides, cumulative average time data are 
more suitable for long-term planning, whereas unit data 
can be better used for weekly or daily planning (Everett 
and Farghal, 1997; Ammar and Samy, 2015). 

 

 

Fig. 3. Floating caisson production cycle (Source: Panas & Pantouvakis, 2018) 
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3.3.1. Stage Α: Assessment of best fit model with 
historical productivity data 

The research approach is aligned with the suggestions of 
Thomas et al. (1986), which have been adopted by most 
pertinent research on learning curve theory (Everett and 
Farghal, 1994; Wong et al., 2007; Ammar and Samy, 
2015; Srour et al., 2016). There are three types of input 
data in the present research: (a) field-data, (b) empirical-
data and (c) data that are estimated or calculated through 
explicit mathematical relationships or models. More 
specifically, the "A" and "Yult" values have been defined 
from the field data (except "A" for the Piecewise model). 
Factor "B" has been empirically set equal to 1.00. Point 
"xpl" denotes the construction of the 5th caisson, whereas 
point "xp2" is set after the construction of the caisson Nr. 
26, because the productivity threshold is expected to be 
reached by then. MS Excel solver function (version 2010) 
has been used in conjunction with the least squares 
method, so as to determine the optimum learning curve 
model parameters and fitting curve. 

Pearson’s coefficient of determination (R2) is the 
preferred metric for each model’s adjustment evaluation to 
historical productivity data since it is quite often used as a 
regression tool for the quantitative depiction of critical 
parameters in learning curve models. R2 values fluctuate 
from 0 to 1.00 whereas the closer the R2 values to 1.00, 
the better the correlation of the fitted data to the selected 
model.  

3.3.2. Stage B: Assessment of best prediction model for 
future performance 

The research methodology is the one that was developed 
and proposed by Everett and Farghal (1994) to assess the 
capability of estimating the expected productivity of 
scheduled activities. According to the research approach, 
the collected productivity data from the construction of the 
thirty-four (n=34) caissons are divided in half (m=n/2). 
The first seventeen caissons (m=17) become the 
"historical data", while the other seventeen caissons 
represent the future dataset. The least squares method was 
applied for the first seventeen (17) caissons in order to 
determine the optimum fitting curve, as well as the main 
model parameters. Pearson’s coefficient of determination 
(R2

1-17) was calculated for the first half dataset and the 
estimated best-fit learning curves were extended for 
predictions within the range of 17th to 34th caisson. 

However, since Pearson’s coefficient of determination 
(R2) yields results that are acceptable only within the range 

of the data which were used to plot the respective learning 
diagrams (Everett and Farghal, 1994), another metric was 
used for the evaluation of future performance. More 
specifically, the statistical metric Ef ("average percentage 
error") that was proposed by Everett and Farghal (1994) 
specifically for learning curve models was used, with its 
mathematical expression being as illustrated in Eq. (10):  

                        E =
∑

ቚ౯ౣశ
ᇲ ష౯ౣశቚ

౯ౣశ

ౡ
సభ

୩
∗ 100                     (10) 

where: m = the number of caissons to be fitted; k = the 
number of caissons to be predicted; yʹm+i = the value found 
on the extension of the best-fit curve; ym+i = the actual 
measured values; Ef = average percentage error, which 
ranges from 0% indicating a perfect correlation between 
the extended best-fit curve and the actual data to large 
positive values indicating no correlation. 

Essentially the statistical metric Ef expresses the 
difference (%) on average between the real dataset and the 
projected productivity estimates. The parameter 
determination method for the models is the same as the 
one in section 3.3.1. with the following exceptions: (a) the 
optimization is performed for the first seventeen (17) data 
points which represent the historical data and (b) the point 
"xp2" (productivity threshold) for the Piecewise model is 
defined to be caisson Nr. 13 (i.e. it is the selection of the 
26th caisson out of 34 caissons if expressed in percentage 
terms).  

4. Results and Discussion  

4.1. Stage A: Assessment of Best Fit Model with 
Historical Productivity Data  

4.1.1. Unit data 

Table 1 summarizes each model’s unit data performance 
for the six activities, as well as the total caisson 
construction process. 
There is a clear indication that the Cubic model yields the 
best fitting results for unit data relating to a) the total 
caisson construction process, b) Slipform Phase A and c) 
Initial Concreting Phase B. The Exponential model gives 
the least favorable adjustment, without being 
unacceptable, though, in absolute terms. Especially, for 
the total caisson construction process all investigated 
models have values of R2>0.92, thus denoting a 
satisfactory correlation with actual field data. These results 
enhance previous research and denote that the best fit 
model depends on the project’s location and nature. 

Table 1. Correlation of Learning Curve (LC) Models for Completed Activities with Unit Data 

Activity 
Pearson's coefficient of Determination (R2) for LC Models 

Straight-Line Stanford "B" Cubic Piecewise Exponential 

Assembling 0.7979 0.7537 0.9213 0.8205 0.8259 

Initial Concreting A 0.5937 0.5880 0.6269 0.5934 0.5491 

Slipform A 0.9673 0.9612 0.9841 0.9695 0.9035 

Initial Concreting B 0.8716 0.8622 0.8970 0.8730 0.8261 

Slipform B 0.9543 0.9595 0.9390 0.9549 0.8887 

Dismantling 0.3614 0.3429 0.4112 0.4142 0.3916 

Total 0.9530 0.9327 0.9781 0.9573 0.9256 
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Fig. 4 illustrates the developed learning curves for the 
total caisson construction process. It should be noted that 
equivalent learning curves have been drafted for each 
activity, but are omitted for brevity reasons. 

Fig. 4. Learning Curves for Historical Data (Unit) 

The following paragraphs summarize the results of the 
fitting process for the other four activities and substantiate 
their differentiation as follows: 

 Assembling: The Cubic model has, by far, the best 
performance amongst all the models. Slipforming 
equipment assembling is a complex activity, 
executed by highly specialized crews. Hence the 
Cubic model seems to better simulate the effect of 
prior experience, as well as productivity beyond the 
standard production point (Thomas et al.,1986). 

 Initial Concreting - Phase Α: All models yielded an 
average performance, with the Cubic model being 
slightly better. It seems that the initial concreting 
process is a labour-intensive but rather standardized 
activity, with no major margins for developing the 
learning phenomenon. 

 Slipform - Phase Β: All models yielded fairly 
satisfactory results. However, the best adjustment 
was achieved by the Stanford "B" model. 
Slipforming phase B is exactly the type of activity 
best simulated by the Stanford "B" model: complex 
(e.g. concreting taking place afloat etc.) and labour-
intensive.  

 Dismantling: The Piecewise model has provided the 
best adjustment, although the average performance 

of all models was relatively low. The dismantling 
process is equipment-intensive (e.g. mainly use of 
mobile / tower cranes) with a minor margin for 
learning phenomenon development. In addition, it is 
an activity sensitive to a series of external 
productivity factors, such as adverse weather 
conditions, the intermittent flow of work, limited 
accessibility to the floating equipment, etc. 

4.1.2. Cumulative average data 

First, it must be clarified that the Exponential model is not 
included in the models evaluation because, as mentioned 
above, no such model for cumulative average data has 
been presented. Table 2 summarizes each model’s 
cumulative data performance for the six activities, as well 
as the total caisson construction process. Fig. 5 illustrates 
the developed learning curves for the total caisson 
construction process. 

The results indicate that the Cubic model has the best 
adjustment to historical productivity data for all studied 
activities. A thorough examination of Fig. 5 reveals that 
both the Cubic model best-fit curve, as well as the rest of 
the learning curves, almost coincide with the actual curve 
derived from the actual on-site data. In addition, the other 
three models yielded a Pearson's coefficient of 
determination (R2) value very close to 1.00, denoting a 
satisfactory prediction capability for all learning curve 
models. For some activities (e.g. Initial Concreting A) the 
Stanford "B" model yields a better correlation than the 
Straight-line or Piecewise model. This is due to the fact 
that factor "B" equals to 1.00 for all activities, thus 
denoting the same level of experience for all deployed 
crews. The latter, of course, may not always be the case. 

 

Fig. 5. Learning Curves for Historical Data (Cumulative) 

Table 2. Correlation of Learning Curve (LC) Models for Completed Activities with Cumulative Average Data 

Activity 
Pearson's coefficient of Determination (R2) for LC Models 

Straight-Line Stanford "B" Cubic Piecewise 

Assembling 0.9761 0.9663 0.9957 0.9766 

Initial Concreting A 0.9703 0.9747 0.9808 0.9742 

Slipform A 0.9948 0.9970 0.9996 0.9977 

Initial Concreting B 0.9875 0.9882 0.9959 0.9894 

Slipform B 0.9980 0.9974 0.9991 0.9989 

Dismantling 0.9423 0.9283 0.9843 0.9525 

Total 0.9940 0.9890 0.9985 0.9941 
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4.1.3. Comparative analysis of learning curve models 
for completed activities 

Taking a look at the results of Tables 1 and 2, there is a 
coincidence in the models’ ranking for the total caisson 
construction process regarding both unit and cumulative 
average data, with the Cubic model providing the best 
results. This finding is in accordance with previous 
research (e.g. Thomas, 2009) since it has been observed 
that, in principle, cumulative average data provide better 
correlations than the unit data. Fig. 4 and Fig. 5 denote 
that learning curves based on cumulative average data 
provide a smoother graphical representation of the 
learning phenomenon. The same goes for the respective 
learning curves produced for each one of the six examined 
activities, but are omitted due to brevity reasons.  

Comparing the Cubic and Piecewise model to the 
Straight-line, for the total caisson construction process 
yields a statistically insignificant difference of 2.51% and 
0.43% respectively (p<5%) for unit data. Same goes for 
the cumulative average data, since the respective observed 
differences were 1.96% and 0.05% (p<5%). A similar 
trend is found for other activities as well. All the 
aforementioned findings corroborate the tendency of 
construction researchers and practitioners to adopt the 

Straight-line model as a more "user-friendly" approach 
since that model (a) gives results of equal reliability to 
other learning curve models, (b) is simpler to apply since 
it requires fewer input parameters and assumptions from 
the engineer’s perspective. 

4.2. Stage B: Assessment of best prediction model for 
future performance 

4.2.1. Unit data 

Table 3 presents the respective Pearson (R2
1-17) and Ef(18-34) 

statistical metrics, while Fig. 6 illustrates the learning 
curves that were derived from the fitting of the first 
seventeen (17) datasets, as well as their extended curves 
covering the total caisson construction process.  

Stanford "B" model was found to be the best predictor 
of productivity rates for the total caisson construction 
process. The average Εf error percentage had the lowest 
value equal to Εf(18-34)=5.7%, which denotes a very good 
correlation of the actual data and the extended curve. 
Generally, it is established that Stanford "B" model 
simulates complex construction processes since it was 
developed to integrate previous experience in the learning 
curve estimations.  

Table 3. Results of Learning Curve (LC) Models for Future Performance Prediction with Unit Data 

Activity 

R2
(1-17) and  Ef (18-34) Values for LC Models 

Straight-Line Stanford "B" Cubic Piecewise Exponential 

R2
(1-17) 

Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34)  

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 

Assembling 0.8957 40.17 0.8971 32.57 0.9660 223.49 0.8960 47.79 0.8629 29.65 

Initial Concreting A 0.6298 48.29 0.6469 48.01 0.6554 57.62 0.6291 49.58 0.5435 70.83 

Slipform A 0.9662 7.60 0.9767 11.20 0.9815 5.61 0.9791 7.78 0.8922 8.15 

Initial Concreting B 0.8757 27.12 0.8889 25.94 0.9016 30.66 0.8893 33.24 0.8079 42.27 

Slipform B 0.9453 7,71 0.9503 7.41 0.9508 17.69 0.9504 7.99 0.8796 8.09 

Dismantling 0.6891 25.57 0.6900 23.75 0.7298 50.10 0.6909 27.90 0.6360 38.25 

Total 0.9629 11.33 0.9626 5.75 0.9767 17.42 0.9628 16.21 0.9096 6.87 

 

 

Fig. 6. Learning Curves and Learning Curves Extensions of Models for Unit Data 
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The following observations were made for the other 
activities, as follows: 

 The Dismantling, Initial Concreting for all its phases 
and Slipform (for the so-called “Phase B”) were best 
simulated by the Stanford "B" model, with 
satisfactory correlation results. An exception is found 
for the Initial Concreting Phase A activity (Εf(18-

34)=48.01%), which is due to the reasons analytically 
presented in section 4.1.1. The differences in the 
models’ ranking for the other activities in relation to 
the total construction process is attributed to the 
different construction type and nature of each activity 
that generates a different simulation mechanism.   

 The Assembling activity was better simulated by the 
Exponential model, while Initial Concreting Phase A 
was better represented by the Cubic model. Their 
differentiation is again related to their different 
construction scope.  

 

4.2.2. Cumulative Average Data 

Table 4 presents the Pearson (R2
1-17) values and the 

statistical metrics Ef(18-34), while Fig. 7 illustrates the 
optimum best-fit curves, as well as their extended curves 
for the total construction process. The Straight-line model 
was found to better predict future productivity values for 
the total caisson construction process. The Εf(18-34)=2.55% 
corroborates the very good correlation between the actual 
data and their extended predictions. This finding is in 
accordance with the respective results of Everett and 
Farghal (1994), who claimed that the Straight-line model 
estimated in the best possible way expected productivity in 
leaning-prone activities.  

Table 4 shows that the Straight-line model was not 
found to be the best predictor in any of the other activities, 
with the exception of the Assembling activity. More 
specifically, Slipform Phase A&B as well as Initial 
Concreting B were best fitted by the Piecewise model, the 
Dismantling activity by the Stanford "B" and the Initial 
Concreting Phase A by the Cubic model.  

 

Table 4. Results of Learning Curve (LC) Models for Future Performance Prediction with Cumulative Average Data 

Activity 

R2
(1-17) and  Ef (18-34) Values for LC Models 

Straight-Line Stanford "B" Cubic Piecewise 

R2
(1-17) 

Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 
R2

(1-17) 
Ef (18-34) 

(%) 

Assembling 0.9698 5.16 0.9786 25.67 0.9969 82.93 0.9749 19.79 

Initial Concreting A 0.9313 7.11 0.9438 14.24 0.9534 1.05 0.9433 1.92 

Slipform A 0.9901 7.90 0.9982 19.80 0.9993 4.24 0.9983 2.65 

Initial Concreting B 0.9748 10.58 0.9853 24.55 0.9920 7.57 0.9842 6.94 

Slipform B 0.9971 4.16 0.9982 14.26 0.9988 2.95 0.9986 0.69 

Dismantling 0.9647 5.59 0.9749 2.88 0.9891 3.73 0.9744 13.70 

Total 0.9903 2.55 0.9937 14.40 0.9979 10.73 0.9919 5.17 

 

 

Fig. 7. Learning Curves and Learning Curves Extensions of Models for Cumulative Data 
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The differentiation of the results for the individual 
activities in relation to the respective results of the total 
construction process is attributed to a number of reasons 
as follows: 

1. The statistical analysis for the prediction of future 
performance based on cumulative average data, does 
not correlate the learning rate of each activity to the 
learning rate of the total caisson construction process 
(Panas and Pantouvakis, 2014). 

2. According to Everett and Farghal (1997), the 
prediction accuracy of future performance of 
individual activities is improved for about 20-40% of 
the activity and then is slightly differentiated. When 
average cumulative data is used, the yielded results 
become less accurate as the activity comes close to 
its end, making them an unreliable prediction metric. 

3. The applied methodology for future predictions has 
only been validated for unit data (Everett and Farghal, 
1994), thus it might present some inherent 
deficiencies in the case of cumulative average data 
for predicting individual activities’ performance.  

4.2.3. Comparative analysis of learning curve models 
for future performance prediction 

The Cubic model presents the best R2
(1-17) value for unit 

data, but not the lowest average percentage error Εf(18-34) 
(see Table 3). Although the Εf(18-34)=17.42 value is 
acceptable for the total caisson construction process, its 
extended prediction curve presents a significant increasing 
trend beyond the 25th caisson (see Fig. 6), which is 
magnified outside of the thirty-four caissons range. The 
same findings have been observed for Slipform Phase 
A&B, where the extended curves demonstrate a slight 
upward and downward trend respectively. At the same 
time, it is interesting, that the Cubic model was the best 
fitting model for Slipform Phase A (Εf(18-34)=5.61). This 
finding is again in accordance with published research 
which claims that Cubic model is poor future performance 
predictor (Everett and Farghal, 1994). 

The Piecewise model for unit data presents a similar 
(but opposite) trend to the Cubic model for the total 
caisson construction process. The statistical metric Εf(18-

34)=16.21 is acceptable but its extended curve presents a 
downward trend beyond the 25th caisson (see Fig. 6), 
which is magnified outside of the thirty-four caissons 
range. Same goes for Slipform Phase A&B, although its 
Εf(18-34) values are generally acceptable.  

In the case of cumulative average data for the total 
caisson construction process, the Cubic and Piecewise 
model presented similar trend to the unit data. Despite its 
fairly acceptable Εf(18-34) metrics (see Table 4), their 
extended curves imply a significant upward and 
downward trend for the Cubic and Piecewise model 
respectively (see Fig. 7). The same observation is made 
for the six individual activities despite their satisfying 
Εf(18-34) values.  

As a final remark, it can be argued that the Cubic and 
Piecewise models are poor performance predictors, with 
the distinctive difference that the Piecewise model needs 
more production cycles to "present" the deviations in 
relation to the Cubic model. Both prediction curves 
possess a significant risk of producing non-realistic results 
if extended beyond the sample of the thirty-four caissons. 

5. Conclusions 

The conducted research demonstrated that the learning 
effect was intensely present in the studied project, which 
resulted in significant improvements in thirty-four (34) 
caissons construction productivity. More specifically, 
from the approx. 4.000 man-hours that were required for 
the first two caissons, the project was completed with 
average productivity of approx. 1.500 man-hours/caisson. 

In the case of the total caisson construction process, all 
five (5) learning curve models were scrutinized for unit 
and cumulative historical productivity data and yielded a 
coefficient of R2> 0.90, which denotes a strong correlation 
to actual data. The Cubic model has proven to be the best 
performer, as far as its convergence to past data is 
concerned. The results coincide with the findings of other 
published research (Thomas et al., 1986; Everett and 
Farghal, 1994) and resulted in the Cubic model being 
more suitable in describing completed construction 
activities.  

In the case of predicting future performance with unit 
data for the total caisson construction process, the 
Stanford "B" model gave the best predictions, while the 
Straight-line model yielded better results when average 
cumulative data were used. Our findings corroborate 
previous research (e.g. Everett and Farghal, 1994), by 
proving that linear models are deemed more suitable to 
predict future performance: the Straight-line model is the 
first linear model, while Stanford "B" model comes as a 
slight variation of the Straight-line model with some minor 
modifications in the first cycles due to prior experience.  

During the analysis of the six remaining activities the 
models’ results differentiated according to the studied 
scope, namely whether the caisson construction process 
was studied as a whole or based on individual activities. 

The Straight-line model yielded acceptable results for 
all examined scenarios, thus corroborating its broad 
acceptability from construction practitioners.  

Therefore, it is beyond doubt that the learning curve 
theory is an efficient and effective tool for assessing 
historical and predicting future productivity data in the 
case of caisson construction operations. The analysis 
becomes a useful tool for construction practitioners in 
order for them to plan and monitor both time schedules 
and cost estimations for their projects.  

Possible research extensions could be developed in the 
area of future performance predictions, by adopting 
different data representation techniques such as a) moving 
average data and b) exponential weighted average. The 
research scope may be enhanced with the inclusion of 
other (non-classic) learning curve models (e.g. DeJong, 
Knecht, hyperbolic models), which were excluded from 
the current study due to brevity reasons. The enhancement 
of the already established historical project database with 
even more data covering similar activities is deemed 
necessary, so as to be able to structure a future 
performance prediction tool with inherent flexibility to 
simulate different work scenarios and feed project 
executives with valuable insights for informed decision 
making.  
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