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_________________________________________________________________________________________ 

Abstract: Estimates of the construction time are of key importance in the early phases of the project – they serve as a 

basis for the decision whether to commence with planning or not, and are used as input for budgets and programmes. 

Usually, such estimates base on experience with similar projects completed in the past. This experience may be recorded 

in the form of mathematical models that relate project characteristics to construction time. The aim of the research was, 

basing on real-life cases, to develop a model of public road building projects duration. The research comprised collection 

of input for the analyses, preselection of project features correlated with duration, and construction of three models: a 

simple statistical regression, a multifactor regression and a regression tree. The models were then compared to each other 

and to the models presented in the literature with respect to their predictive ability. With the assumed set of potential 

predictors of construction duration, the regression models were found statistically correct, though not precise enough be 

used as decision-support tools.  

Keywords: Construction duration estimates, regression tree, multiple regression. 

_________________________________________________________________________________________ 

1. Introduction

The literature on planning construction projects with 
respect to time focuses mostly on tools and techniques 
related with detailed scheduling problems of on-site 
operations. The objects of researchers’ interest are, among 
others, improvement of network techniques, schedule 
optimisation and schedule reliability improvement (e.g. 
Jaśkowski and Sobotka, 2012; Biruk and Jaskowski, 2010, 
Ko and Chen, 2012, Liu and Wang, 2012). However, 
before any scheduling can be conducted, the project 
constraints have to be defined, and the key one is the 
overall duration of the construction phase. It needs to be 
assumed early in the project preparation stage to serve as a 
basis of any future planning, feasibility checks, and 
negotiations with project participants. The literature on the 
methods of defining the required construction duration at 
early stages of project planning is scarce. The estimates 
base on a compromise between the client’s expectations 
towards completion date and on “technical” feasibility of 
the construction makespan. The latter comes from the 
planner’s experience with similar projects.  

In the case of early cost estimates, there exist an 
abundance of methods – from intuitive case-based 
reasoning to complex mathematical modelling – that use 
cost records of completed projects to predict cost of new 
schemes. Examples of parametric cost models can be 
found e.g. in Cheung and Skitmore (2006) and ISPA 

(2008). With the development of information technology, 
non-parametric cost models gain on popularity: neural 
networks were used e.g. by Adeli and Wu (1998), Elhag 
and Boussabaine (1999), Leśniak (2004), Juszczyk (2008), 
and simulation techniques by Chau (1995) or Lai et al. 
(2008). Interestingly, databases of construction schedules, 
or even records of overall construction duration, are less 
common. The models of project duration based on 
historical data are also quite rare in the project 
management literature.  

The paper investigates into the duration of public road 
projects and the potential of utilising data of real-life cases 
from the past to forecast durations of similar projects in 
the near future by means of simple regression models. 

2. Regression Models of Construction Duration

Cost is a generalized measure of any project’s scale and 
complexity. The existence of a relationship between 
construction time and cost has been considered obvious: 
the time-cost-performance triangle appears in practically 
all project management handbooks (e.g. Kerzner, 1984). 
Assuming that a reliable estimate of the project cost is 
possible to be made at early stages of planning, the cost 
may be considered known at the moment when project 
duration is to be decided. This rather optimistic 
assumption was the foundation of numerous models that 
could be used for predicting project duration on the basis 
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of project cost. The first time-cost regression model of 
construction projects is attributed to Australian researchers 
who, having analyzed cost and duration of a sample of 
construction projects completed during late 1960ies, 
proposed the following model, later referred to as the 
Bromilow’s time-cost model (Kaka and Price, 1991): 

 BCKL  ,                                  (1) 

or its equivalent: 

 CBKL lnlnln  ,                         (2) 

where L is the number of working days from the 
contractor’s possession of the building site to the 
completion of works; C – actual value of works as paid by 
the client, expressed in A$ million; K and B – constants.  

Bromilow’s findings were checked by other 
researchers on the basis of new samples (Kaka and Price, 
1991; Chan, 2001; Yousef and Baccarini, 2001; Ogunsemi 
and Jagboro, 2006). The form of the time-cost function (1) 
was confirmed to match sample data better than other 
function types tried, though determination coefficients 
obtained by the authors were low (for large samples of 
non-uniform projects below 0.75). Large yearly 
fluctuations of the constants B and K were reported, 
though without any particular trend (Skitmore and Ng, 
2001). 

Statistical significance of the time-cost relationship 
gave rise to numerous attempts to create a multifactor 
regression model of construction duration that would 
incorporate project qualities other than cost and provide a 
better fit than the Bromilow’s model. Table 1 provides an 
overview of selected findings presented in the literature 
that regard factors correlated with construction duration 
and duration models, where L stands for construction 
duration expressed in days, and bi are constants. Generally, 
there was no agreement on what factors should be the 
basis for estimating the duration. With few exceptions 
(Skitmore and Ng, 2003, Love et al., 2005, Stoy et al., 
2007), cost was usually considered the most important 
independent variable present in multifactor models. The 
models presented in the literature were claimed to be 
statistically correct and significant. However, the authors 
often came to contradictory conclusions: some found that 
e.g. the client’s sector (public/private), building function 
or size strongly affected the construction duration, others 
excluded them as insignificant.  

The initial selection of factors considered was also a 
matter of assumption, as the models were not always 
aimed at duration predictions – some were by-products of 
search for factors correlated with duration, some were 
used for measuring the project time performance. Some 
researchers focused on management factors, other 
preferred more “tangible” qualities, either known well 
ahead of commencement with works, or  possible to be 
determined only after the project was finished.  

The log-log relationship between time and cost in 
these multifactor models was widely argued to provide 
best fit, though some different functions were also 
proposed (Stoy et al., 2007; BCIS, 2004a; Martin et al., 
2006; BCIS 2009). The authors were rarely specific about 
the quality measures of their models. The prediction and 
confidence intervals for the estimates can be found only in 
Stoy et al. (2007), BCIS (2004a) and BCIS (2009). 

Naturally, the larger and more diversified the samples, the 
greater errors were observed. 

Most researchers analysed projects related with 
construction of buildings, so there are only a few works 
devoted to civil engineering projects. Kaka and Price 
(2001) analysed 140 UK road projects and found that the 
form of contract (fixed price vs. adjusted price) affects 
strongly the Bromilow’s time-cost model parameters. 
Yousef and Baccarini (2001) conducted similar work on 
the basis of 46 sewerage projects in Australia, but did not 
considered factors other than costs. Irfan et al. (2011), 
disposing of large samples, focused on highway projects 
and created separate regression models for different 
project types (maintenance, resurfacing, construction, 
bridge construction, traffic infrastructure) that used 
planned cost and contract type as predictors of duration. 

Most authors claimed that it was possible to apply 
regression models to estimating construction time on the 
basis of cost, so they assumed that it was easier to estimate 
construction cost than construction time, and that the cost 
estimates were accurate enough to provide the basis for 
time estimates. However, there is an abundance of 
evidence on discrepancies between early budgets and costs 
at completion. Case studies focus on most striking 
examples (Potts, 2005; Polonski, 2006; Magnussen and 
Olsson, 2006), but there exist statistical overviews of the 
scale and frequency of cost miscalculations: quite 
alarming by Flyvbjerg et al (2002), and a number of less 
pessimistic (Ng et al. 2001; KPI UK, 2003; BCIS, 2004b; 
KPI New Zealand, 2005). Another issue is the reliability 
of the winning-bid price as a measure of the project scope 
and scale. There is evidence that contractors’ bids are 
sensitive to intensity of competition, subjective risk 
perception and even season of the year when a call for 
tenders is announced. This can be observed in bid spreads 
in public procurement procedures. In Poland, they are 
expressed by an average bid dispersion factor Wz 
(Borowicz, 2005): 
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where n is the number of tender procedures 
investigated, and Cimax , Cimin are, respectively, the highest 
and the lowest bid in each procedure. For instance, for the 
years 2000-2007, the average bid dispersion factors of 
public projects in Poland were from 1.23 to 1.43, and bid 
dispersion in particular cases reached even 250% 
(Borowicz, 2005 and 2008). Thus, the relationship 
between the contract price and actual value of works may 
be rather loose. 

Under these circumstances, there are reasons to 
question both the “as-planned” and “contractual” cost in 
the role of independent variable for planning construction 
time. Moreover, it occurs that predictability of cost is 
generally no better than predictability of time (Martin et 
al., 2006; KPI UK, 2003). This provides more arguments 
against using cost as a predictor of time. However, before 
it is rejected, it would be interesting to check the model’s 
sensitivity to cost miscalculation. In general, values of the 
constant B in the models presented in the literature range 
from 0.2 to 0.5, and the smaller B, the smaller the effect of 
cost on the value of the time estimate (see formula 1). The 
time-cost models are thus not very sensitive to the cost 
estimate errors. 
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Table 1. Selection of multifactor models (selected works), L – construction duration, bi – constants. 

Author, sample Significant factors Regression function, quality measures 

Kaka and Price 1991,  

UK 

661 buildings from BCIS 
database, 

140 civil engineering 
projects  

cost 

client’s sector (public/private) 

contract type (fixed-price/other) 

procurement route (open tender/restricted 
tender/negotiations) 

project type (building/civil eng.) 

simple time-cost regression: 

CbbL loglog 00   
separate equations for sub-sets divided 
according to significant factors other than cost 

 

assumed that building function does not affect 
model parameters 

Walker, (1995), 

33 non-residential 
buildings, new-built 

cost (C) 

ratio of time extension (x1) 

scope (fit-out/other) ( x2) 

level of quality requirements (x3) 

management style (x4) 

design and construction teams 
communication quality (x5) 

efficiency of IT use (x6) 

6622110 ...loglog xbxbxbCbL   
determination coefficient R

2
=0.9987 

and percentage errors of estimate (for particular 
observations, not summarised) 

Chan and Kumaraswamy, 
(1999), 

56 blocks of flats of the 
same standardised design 
system, the same public 
client,  

different set of factors describe as-planned 
and actual duration; for actual duration L: 

cost (C) 

project type (flats for sale / rent) (x1) 

facade type (prefab or other) (x2) 

volume of the building (x3) 

gross floor area (x4) 

number of storeys (x5) 

5

4

4332110
lnln

x

x
bxbxxCbbL 

 
percentage errors of the estimate of L for each 
observation, maximum errors of  +/-7%, the 
model’s MAPE=2,51% 

Skitmore i Ng (2003) 

Australia, 

93 buildings, new 

contractual time (CT) 

contract type (lump sum / other) (x1) 

procurement method (x2) 

cost excluded from the analysis 

3210 loglog xxCLbbL 
, 

Adjusted determination coefficient R
2
=0.938 

Love et al. (2005) 

Australia. 

126 buildings, new or 
refurbished 

usable floor area (x1) 

number of storeys (x2) 

cost excluded from the analysis, as cost not 
known until the project is finished 

22110 logloglog xbxbbL 
, 

Adjusted R
2
=0.96 

MAPE=50% 

Stoy et al. (2007), 

Germany, 

200 buildings from BKI 
database, 16 buildings for 
verification 

gross floor area (x1) 

number of winters (x2) 

project planning time in months (x3) 

dependent variable is logarithm of 
construction speed,  

cost excluded 

3322110
1 lnlnln xbxbxbb

L

x


, 

Adjusted  R
2
=0.915, MAPE=20%, 

Errors of estimate for test sample projects range 
(-29%;9%) 

Hoffman et al. (2007), 
USA, 

616 military buildings, new 
or refurbished 

cost (C) 

client type (x2-x4) 

management (own / contr. out) (x5) 

design type (own / contr. out) (x6) 

665544

332210 lnln

xbxbxb

xbxbCbbL





 
Adjusted R

2
=0.374 

BCIS (2004a) 

UK, 

1500 new buildings, from 
KPI database 

cost (C) 

procurement system (x3) 

contractor selection (x4) 

client type (x5) 

function (x6) 

region (x7) 

77665544

33

2

210 loglog

xbxbxbxb

xbCbCbbL





 

BCIS (2009), 

UK, 

4500 buildings, new or 
refurbished, BCIS database 

factors as above 

Separate regression functions for new-
builts and refurbishments  

Winter period does not affect duration 
significantly 

equation as above 

the “calculator” provides prediction and 
confidence intervals for the estimates; separate 
equations for new-built and refurbishment 
projects 
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2. Methods 

2.1. Aim and Scope of Research 

The aim of the research was to create a model of the road 
construction duration based on relationships between the 
project qualities. These relationships were assumed to be 
determined while analysing project qualities likely to be 
known or estimated at early planning stages, without 
consideration of  organisation of works or construction 
methods. The model could be applied to estimating 
construction duration at the stage of feasibility checks.  

For the purpose of this study, a project was defined as 
a scope of works contracted in one public procurement 
procedure and covered by one contract, supplemented 
with change orders and contract annexes, if applicable. 
Construction duration was measured as the number of 
calendar days from the day of commencement with works 
to the date of completion of the contract. Construction cost 
was the amount payable to the contractor – reduced or 
increased by penalties, change orders etc. 

Stages of research were as follows: literature review, 
interviews with the construction clients – to determine 
their approach to estimating construction durations and 
budgets at the planning stage (outside the scope of this 
paper), data collection (by analysing project records – no 
ready-made databases were available), preselection of 
project qualities correlated with duration by means of the 
regression tree, construction of regression models, and 
finally assessing quality of the models. 

Three types of models were selected for comparison: 

1. simple regression (parameters calculated by means 
of the least squares method) between functions of actual 

duration (L) and actual cost (C): )()( 10 CfbbLf  , 

where b0 and b1 are model parameters,  

2. CART regression tree based on 25 project qualities 
recorded at data collection stage and likely to be known at 
early stage of project planning; 

3. multiple linear regression model (parameters 
calculated by means of the least squares method) relating a 
function of actual duration (L) and functions of predictors 
selected from the same project qualities as used to 
construct Model 2, 

)(...)()()( 22110 nn xfbxfbxfbbLf 
, where b0 – 

bn are model parameters, and x1 – xn are predictors. 

Calculations were conducted by means of Statistica 8.0. 

2.2. The Sample 

The sample comprised 100 public road projects, 
completed between 2003 and 2008 in three neighbouring 
regions in south-eastern Poland. The projects considered 
differed in scope and type (Fig. 1), and their cost (“as 
planned”, including VAT) ranged from PLN 800 thousand 
to PLN 500 Million. The sample was considered 
representative of road projects from the analyzed period 
and location, and its size was at least 15% of the size of 
the population (imprecise due to non-uniform reporting 
methods used by the public clients).  

One of the early assumptions of the research was to 
analyse projects of one kind, such as new circular roads. 
As occurred during the data collection process, the number 
of such projects was too small to be used for statistical 
analyses, and the majority of works contracted in the 
analyzed period consisted in modernization of the existing 
infrastructure. Therefore, projects varying in scope and 
type were included in the sample. Their similarity 
consisted in overall conditions: the clients were from 
public sector and acting under similar budgetary 
constraints, the regions were similar in terms of natural 
and economic environment and level of infrastructure 
development, the works were contracted according to the 
public procurement law, the only criterion of contractor 
selection was the lowest price, and contract duration was 
enforced by the client. A diversified sample implies that 
the model derived from the data would be a far going 
generalisation. 

Prior to construction of the models, the cost and time 
predictabilities of the cases included in the sample were 
compared to check if cost was not significantly less 
predictable than duration (if so, duration estimates based 
on cost would be questionable). Fig. 2, compares these 
predictabilities. 

Predictability of construction cost at planning stage 
was defined as the difference between the actual cost C 
and the as-planned cost CPL assumed by the client, 
expressed as a percentage of the as-planned cost, in 
accordance with the definition of Cost Predictability – 
Construction presented in KPI UK (2003):  

 %100



PL

PL
PL

C

CC
PC                        (4)  

Predictability of construction cost at contract signing 
was defined as the difference between the actual cost C 
and the contractual cost CC, expressed as a percentage of 
the contractual cost. Predictability of construction duration 
was defined as the difference between the actual duration 
L and the as-planned (contractual) duration LPL=LC, 
expressed as a percentage of the planned duration.  

  

Fig. 1. Sample structure according to project type and scope of works
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Fig. 2. Duration and cost predictabilities in the sample 

Actual cost exceeded the range of planned cost by +/- 
10% in about 50% of cases, while actual duration occurred 
to be slightly more predictable – time miscalculation 
greater than 10% of the planned duration took place in 
about 45% of cases. However, at contract signing, the 
predictability of cost was evidently better than that of 
duration: only 20% of cases were outside the contractual 
cost +/- 10% brackets. This may be due to the client’s 
preference on fixed-price contracts (33% of cases) and 
restrictions on public spending.  

One can conclude that, for predictability reasons, both 
the planned (the client’s estimate) and the contractual cost 
may serve as a predictor of duration: the planned costs’ 
predictability is comparable with the predictability of time, 
and the contractual cost’s predictability is better. Thus, 
there is no reason to question construction cost as 
a potential predictor of construction duration in the sample. 

3. Results  

3.1. Simple Linear Regression Model 

Analysis of scatter diagrams (Fig. 3) and experiments with 
several functions confirmed thatthe Bromilow’s model 
provides the best fit for the analysed sample, and that it is 
statistically correct. The model (Formula 5) is significant 
(F-test) and of significant parameters (t-tests), the 
residuals are normally distributed, with constant variance 
and expected value of 0. Normality was checked by 
analysing residual histograms, scatter diagrams, and by 
normality tests: Kolmogorov-Smirnov/Lilliefors’ and 
Shapiro-Wilk’s. Homoscedasticity of residuals was 
checked by analyzing residual scatter diagrams, and by 
Lagrange test (Stanisz 2007). The Bromilow’s model for 
the sample (Model 1) is described by the following 
equation: 

 CL ln4749,02067,1ln                    (5) 

The model’s adjusted determination coefficient 

636.02 R , and standard error SEE=0.504. The mean 
absolute percentage error MAPE=44,84% is comparable 
with the scale of errors of time-cost models using 
logarithm transformation of duration, presented in the 
literature. 

3.2. Regression Tree 

While collecting input, data on 25 project qualities were 
collected. These qualities were considered likely to be 
known at early stages of project planning, and were of 
various types: categorical and quantitative, related with 
geometric parameters of the road, scope of works, road 
class, location, number of bridges and many more (listed 
in Fig. 5). All these potential predictors were used to 

construct regression tree (CART) models. The method 
consists in recursive division of the set of observations 
into subsets (two subsets at a time), according to one 
quality at a time, to obtain the greatest possible reduction 
of heterogenity of observations in the subset (Gatnar, 
2001). Here, the heterogeneity was measured by the 
variance of durations of projects in the subset. The best 
tree was selected according to Breiman’s procedure 
(Gatnar, 2001). The best-fit model (Model 2), presented in 
Fig. 4, uses seven predictors: assumed number of winters 
during construction, construction cost, number of culverts 
along the route, client type (either national or regional 
road office), total length of civil engineering structures, 
number of intersections, number of parking/bus bays. If 
applied in practice, it would assign a project one of ten 
durations: 91, 161, 166, 291, 396, 487, 490, 573, and 810 
days. Some of them differ by only a few days. 

The model’s adjusted determination coefficient 

924.02 R (Gatnar, 2001) indicates that the model is 
well fitted to the sample. Considering the relatively small 
number of observations used to create the model, and their 
being diverse, this is not automatically an advantage when 
it comes to using the model for predictions.  

There may be doubts about using the number of 
winters as a predictor of construction duration, as hard to 
estimate as the duration itself. However, interviews with 
the client’s representatives indicated that the clients 
decided to fit a project in a certain number of years at the 
beginning of the project planning process, which arised 
from budgetary constraints and long-term planning of 
public organisations. Therefore, the number of winters can 
be considered defined in advance. Selection of this 
variable was prompted also by other research (Stoy et al 
2007; BCIS 2004a) – where it was to allow for seasonal 
changes in speed of works. 

 

Fig. 3. Scatter diagram of actual construction duration L 
against actual cost C (a), and scatter diagram of log-log 

values with regression line (b) 
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3.3. Multiple Regression Model 

It was assumed that a linear multiple regression model 
would be looked for, and its parameters were to be 
determined by the least squares method. With only 100 
cases in the sample, using the stepwise regression to select 
the most suitable of 25 potential predictors (or actually 
over 40, as categorical variables were converted into 
binary variables) was considered inefficient. However, 
while constructing regression trees, one can identify 

variables that are potentially strongly correlated with the 
predicted variable, but not necessarily present in the best 
regression tree (Gatnar, 2001). Fig. 5 presents the relative 
importance of the potential predictors, determined in the 
procedure of constructing regression trees. 

For further investigations, nine potential predictors 
were selected arbitrarily: six of the “most important” 
defined in the CART analysis (Fig. 5), and additionally 
those present in the best regression tree. 

 

Fig. 4. Model 2 – regression tree 

 

 

Fig. 5. Relative importance of variables defined while constructing regression trees 
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 These nine factors were then used for constructing 
regression models by means of stepwise regression 
(forward selection and backward elimination): 

‧construction cost, 

‧number of winters, 

‧length of civil engineering structures in the scope of 

a project, 

‧number of civil engineering structures, 

‧total length of roads covered by the project, 

‧number of culverts along the route, 

‧number of bays, 

‧number of intersections, 

‧client type (either regional or national road agency) 

Several models were tried, differing in transformations 
of variables. The best fitted was Model 3, with four 
predictors: cost (C), civil engineering structures length 
(Civil_s_length), number of winters (Winters), and 
number of civil engineering structures (Civil_s): 

sCivilWinters

lengthsCivilCL

_28.044.4

__ln56.0ln89.143.4




(6) 

The model fulfils the assumptions of the least squares 

method, 867.02 R , MAPE=13,17%, SEE=2.28. 

Considering the parameters of Equation 6, one can 
observe that the estimate is very sensitive to the number of 
winters that can be hard to asses. 

3.4. Quality of the Models 

The models use different transformation of predicted value 
(lnL in the case of simple regression, L for regression tree, 

and L for multifactor regression). Due to this fact, the 

statistics of adjusted determination coefficient 2R , 

standard error SEE, or mean absolute percentage error 
MAPE cannot be directly compared.  As the models are 
meant to be used for predicting duration expressed in days 
(L), errors expressed in days were calculated (Li is the 

observed duration, and iL̂ – duration calculated on the 

basis of the model):  

 iLLe i

days

i
ˆ                                (7) 

Analysing them, one can see the scale of dispersion 
between expected vs. observed – for the set of 
observations used to build the models. Values of these 
errors, and the mean absolute percentage error, MAPE

days
 : 

 



n

i i

days

idays

L

e

n
MAPE

1

100
,                    (8) 

are directly comparable, though not normally distributed. 

Fig. 6 compares the scale of errors in days for all models 
considered. For practical applications, the best model 
would be the one of lowest dispersion. In this case, it is the 
regression tree. Its MAPE

days
 is 23%. Model 1 has 

MAPE
days 

of 45%, and Model 3 – 28%.  

To compare the models’ predictive ability, duration 
estimates (in days) were calculated for seven projects not 
included in the initial sample. Their qualities stayed within 
the ranges covered by the models. Fig. 7 shows predicted 
vs. observed values of project durations. Again, for 
practical applications, the best model would be the one of 
lowest error.  

The test sample is small, which affects reliability of the 
conclusions. In the case of these particular projects, it is 
Model 3 that seems to provide most precise predictions, as 
the observed values are quite close to predicted values. To 
express it in numbers, one can calculate mean absolute 
percentage errors in days for the test sample: the “best-

looking” prediction model (Model 3) has 
days

testMAPE
= 9%, 

the second-best is Model 1 (Bromilow’s) with 
days

testMAPE
=21%. The regression tree (Model 2) provides 

the least accurate estimates with 
days

testMAPE
=22%. This is 

due to the fact that it is too well adjusted to the initial 
sample, and the test sample simply does not follow the 
same pattern. The quality of predictions based on 
regression functions cannot be judged without prediction 
and confidence limits for the estimates of durations. 
However, in the case of non-parametric Model 2, there are 
no grounds to calculate prediction and confidence 
intervals in a way that could be compared with Models 1 
and 3. Fig. 8 presents these data for parametric models 
(expressed in months for better readability), assuming 
95% confidence level.  

 

 

Fig. 6. Comparison of model errors expressed in days 
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Fig. 7. Predicted against observed durations (days) of test sample 

 

 

Fig. 8. Comparison of confidence and prediction intervals at 95% confidence for Model 1 and Model 3, test sample 
projects, durations expressed in months 

 
Model 1 seems too inaccurate to find any practical 

application. This may be illustrated by Case 3 from test 
sample: the user can be 95% sure that the expected 
duration for the project of such cost is between 11 and 15 
months (confidence interval for regression), but can be 
also 95% sure that a particular project of such cost may 
take between 5 and 36 months (prediction interval). The 
multiple regression Model 3 is certainly more accurate, 
but confidence and prediction intervals are still quite broad: 
for Case 3, the confidence limits for the regression are 11 
and 14 months, and prediction limits – 7 and 19 months. 

4. Summary and Conclusions 

Developing a model that could be used to estimate the 
overall duration of construction works on the basis of a 
few data available at the earliest stages of project 
preparation is not an easy task. As there are many factors 
affecting construction duration, and a considerable number 
of them are related with events and decisions ocurring at 
later stages, it is hard to expect that such models would be 
reliable as tools for  predictions – they are more to record 
what is likely to be feasible judging by experience with 
past projects. The paper was aimed at recording such 
experience in the case of Polish public road construction 
projects in the form of regression models. Another aim of 

the paper was to check if such models could find any 
practical application. 

The sample considered in the paper was small and 
diversified. However, some statistically significant 
relationships between construction duration and other 
project qualities have been found. Calculations confirmed 
the universal character of the Bromilow’s time-cost model 
proposed in nineteen-sixties. Certainly, the model has 
some advantages: it is simple and, at least for the 
considered sample, statistically correct. However, its 
errors are high (mean absolute percentage error in days is 
45%) , and the prediction and confidence intervals 
impractically broad.  

Using a non-parametric method of regression trees, 25 
qualities of the analysed project were checked with regard 
to their relationship with construction duration. Only four 
of them (the most important according to the non-
parametric analysis) stayed in the final multifactor 
regression model: construction cost, number of winters 
within the construction period, total length of civil 
engineering structures (as bridges) in the project, and the 
number of these civil engineering structures. The 
predictors are different than these presented in the 
literature – this is of course specific to the type of projects 
analysed (the literature focuses mostly on buildings, not 
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roads) and initial assumptions on what factors to consider. 
What is interesting, the form of a multifactor regression 
equation most frequent in the literature (Table 1), 

 jjii xbxbCbbL  lnlnln 10 ,             (9) 

where L is duration, C is cost, xi is a continuous variable, 
xj represents a discreet variable, and bi – parameters, did 
not provide the best fit for the analysed sample. The 
following equation proved more appropriate: 

 
jjii xbxbCbbL  lnln10
.            (10) 

It is statistically correct, immune to outliers, of lower 
errors and narrower predictions and confidence intervals, 
and also not very sensitive to errors of the predictors’ 
estimates, with the exception of the number of winters.  

A non-parametric model of regression trees (CART) 
also provides a good fit, though its predictions tested on a 
small sample occurred less accurate than the predictions of 
the classic regression models. Interestingly, the regression 
tree uses a different set of predictors than the multifactor 
regression model: instead of number of civil engineering 
structures, there appeared: client type, number of culverts, 
number of intersections and number of bays. However, 
with the sample being small (100 observations used to 
construct the model and 7 to validate it) and diversified, 
such models are not reliable. 

Time-cost regression models for repeatable projects 
(e.g. buildings of the same function, structure type, similar 
layout and location) could be more precise. Similarly, if 
more independent variables were considered, and samples 
were larger, better models could be provided. A number of 
researchers report their achievement in this field (Irfan et 
al. 2011) and there exists at least one commercial 
regression-based duration “calculator” (BCIS 2009). This 
may serve as evidence of practical applicability of 
parametric models in planning construction duration. Such 
models have some advantage over other models based on 
experience, such as “black box” expert systems, or neural 
networks – they are portable: regression models are 
expressed as equations, and to use them, one does not need 
to dispose of the whole database or software. Moreover, 
the reasoning process behind the model is quite obvious. 
This may be the reason why, in the time of quick 
development of artificial intelligence methods, statistical 
analyses do not loose on popularity. Further research in 
the field may include: investigation on other factors, 
constructing other model types (here, specification of 
regression functions was based on results presented in the 
literature and scatter diagram analyses, and the simplest 
approach of least squares method was used), and applying 
artificial intelligence tools to create better models. This 
however requires expanding the database.  
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