

Formalizing a Language for Specifying Building
Components from IFC

Ernest L. S. Abbott1, Kerwei Yeoh2 and David K.H. Chua3

Abstract
Identifying construction requirements is a complex task that is often overlooked. With the
advent of Building Information Modelling (BIM), building components such as beams,
columns and slabs are represented as objects using the IFC specification. This paper proposes
a Building Component Specification Language which formalizes a method of specifying the
elements which make up the spatial attribute of a construction requirement. The advantage
of the proposed language is an easily understood mechanism which allows low level
specifications to be easily represented using an iterative mechanism. This iterative
mechanism allows the scaling of low level specifications to a higher level one, thus
significantly reducing the complexity of user entry.

Keywords: BIM, Construction Requirements, IFC, Building Component Specification
Language.

Introduction

Construction Requirements have been defined by Chua and Yeoh (2010) as being the
requisite preconditions for construction to be carried out. In general, these construction
requirements encompass the various regulatory, safety and engineering constraints
applicable, and are important as an explicit representation of construction knowledge.

The lack of frameworks to represent these construction requirements within construction
schedules has led to contractors being unable to adequately capture the impact of missing
requirements on their schedules, leading to undesirable delays and potential cost overruns.
Instead, contractors examine building plans and apply their construction experience to
analyse the relationship between building components. They then determine what they
consider to be an effective and efficient construction process. Consequently, the construction
schedule is generated in an ad hoc manner. At best, these schedules are time consuming to
plan, and become more tedious as the complexity of the project increases. At worst, the plans
are erroneous and infeasible; amounting to unnecessary cost and rework (Yeoh and Chua
2014). To date, using construction requirements as a construction knowledge modelling tool
has seen applications in automatic scheduling (Chua et al 2013), reasoning on building’s
structural functions (Yeoh 2012), as well as on extending reasoning capabilities for naval
construction databases (Abbott et al 2010).

1 Research Engineer, Dept. of Civil & Environmental Engineering, National University of Singapore,
Block, E1A #07-03. No 1 Engineering Drive 2. Singapore 117576. (65) 65164643. Fax (65) 67791635.
Email. ceeaels@nus.edu.sg
2 Lecturer, Dept. of Civil & Environmental Engineering. National University of Singapore. Block
E1A #07-03. No 1. Engineering Drive 2. Singapore 117576. (65) 65164643. Fax (65) 67791635. Email.
ceeykw@nus.edu.sg
3 Associate Professor. , Dept. of Civil & Environmental Engineering, National University of
Singapore, Block, E1A #07-03. No 1 Engineering Drive 2. Singapore 117576. (65) 65162295. Fax (65)
67791635. Email. ceedavid@nus.edu.sg

407

mailto:ceeaels@nus.edu.sg
mailto:ceeykw@nus.edu.sg
mailto:ceedavid@nus.edu.sg

To address the above problem, Yeoh and Chua (2014) provided a formal representation
to describe the behaviour and function of a construction requirement. Their representation
schema identified a requirement of requirements, namely: temporal, spatial and metric
attributes. The representation schema provided a framework for describing the construction
requirement using these three attributes in a machine readable format, as well as depicting
the various interdependencies between them. Chua et al (2013) further elaborated on some
of these ideas, implementing an automatic schedule generation system based on the
functional construction requirements.

The major challenge of employing the above framework is the difficulty of specifying
construction requirements at several levels of detail. Various spatial (topological)
relationships could exist between individual building components. For example, a Beam is
connected to Column. However, certain relationships must be defined on a set of components,
such as a slab being supported by a beam truss system. This presents an added complexity
as the relationship is not just between the slab and individual truss elements, but also between
slab and the entire truss system.

With the advent of Building Information Modelling (BIM), building components such
as beams, columns and slabs are represented as objects using the Industry Foundation
Classes (IFC) specification. IFC is a platform neutral, object-based, open file format data
exchange. More importantly, it is now an industry standard and is complied with by major
BIM software platforms. Various building objects are parametrically described in an IFC
file, thus making such a file suitable for incorporating into the representation of construction
requirements. The current release of the IFC standard specification, IFC4 has 766 entities
defined within (Liebich 2013).

This paper will introduce a Building Component Specification Language (BCSL) which
will be used as a constructor to specify building systems based on the components and its
associated parameters. This is a vital step in the description of construction requirements.

Background Review: Construction Requirements
The proposed Construction Requirements by Yeoh and Chua (2014) uses an upper level core
ontology to establish the spatial, temporal and ordinal nature of construction requirements.
As construction requirements may be expressed in many forms, from contractual
conformance requirements, to site requirements expressed in natural language between
contractors, a taxonomical schema is defined on the entities constituting the construction
requirement.

The upper level core ontology (shown in Figure 1) starts with the characterization of a
core immutable set of attributes. These core attributes are then instrumental in defining the
entities making up the construction requirement, by providing a fundamental basis for
describing their key characteristics. These in turn form the knowledge constructs of the
requirement.

Figure 1. Approach Adopted for defining Construction Requirements

Core Attributes of Construction Requirement Entities
A construction requirement is defined by its constituent entities. An entity of a construction
requirement may be defined by establishing one or more of the following characteristics:

408

• Tangibility (Spatial): Tangible entities are entities which can be perceived, and
inherently have spatial attributes. These tangible entities are extracted from the IFC
model.

• Temporal behaviour: Temporal behaviour is derived from the schedule, and is typically
associated with the individual IFC element to obtain a fourth dimension.

• Measurability (Ordinal): Measurability refers to the perceptible measure. These may
be inferred directly or indirectly from the parameters of the IFC elements.

The above establishes a “requirement” of requirements, covering the spatial, temporal
and measurable aspects. This paper focuses on the rules that describe the set of entities
making up the spatial aspects of the construction requirement.

Illustrating Construction Requirements via an Example
A simple example of a simple construction requirement is now established using concepts
from prior sections. A construction requirement is the confluence of purpose and operation.
Hence, the taxonomy of a construction requirement can be defined as: Purposive,
Operational and the necessary conditions defining the interaction between the two.

Purposive and Operational
The purpose for a construction requirement may be defined as fulfilling the desired intention.
This intention takes the form of a function. A function is the action of performing an
intention, and is physical, thus directly involving both spatial and temporal dimensions
(entities). For example, requirement R1 could be “R1: IfcColumn C1 Supports IfcBeam B1”.
The “Support” indicates a physical function by C1, to be used by B1.

The purpose of the requirement is intimately tied to the IFC entities within the system.
For these functions, further categorization into function users and function providers is
necessary. Users are the requesters of the function, providing the purpose for the requirement;
Providers provide the function, exhibiting the operational behaviour needed to fulfil the
requirement. Using the above example “R1: C1 supports B1”, C1 is the function provider
(operational), while B1 is the function user (purpose).

Necessary Conditions
The necessary conditions are the conditions which must be fulfilled before the requirement
is available for proceeding.

Challenges and Research Motivation
Firstly, the representation of a simple functional construction requirement will be illustrated.
The functional requirement R1 is modelled using the above schema as shown in the
following figure:

Figure 2. Functional Requirement Example

409

In Figure 2, the purposive and operational aspects of the requirement are identified with
the function user and function provider respectively. IfcBeam B1 requires a support, and this
support is to be provided by IfcColumn C1. Additional details regarding the definition of
function user and function provider will not be discussed within the context of this paper.

The above example illustrates a single construction requirement. This construction
requirement is at an extremely low level, meaning that it applies to a small subset of building
components. However, a single construction project is likely to encompass numerous
construction requirements, and some of these requirements may be at a higher level. For
example, a requirement could be that all beams have to be supported by columns.

The implication of the above is that a method of specifying building components
covering both higher and lower levels must be devised. Furthermore, the specification
method must allow lower level sets of elements to be automatically generated from the
higher level specification. To achieve this goal, this paper proposes the Building Component
Specification Language (BCSL) to derive a partial model based on specified IFC attributes
and/or parameters.

Review of Related Literature

The current literature on related technologies consists of database query languages.
Structured Query Language (SQL) is the standard, with many various dialects available.
SQL is based on relational algebra, and inspects structured data represented by this relational
algebra. While it is a de facto standard, SQL is generic and not domain specific, making it
difficult to implement on IFC data models.

Filtering of IFC data models is accomplished by several specialized approaches, which
implicitly handles the internal data representation. One example is the Partial Model Query
Language (PMQL) by Adachi (2003). This is based on an XML representation, and provides
Select, Update and Delete operators. It is implemented by integration with the IFC Model
Server. Users use the Select statement to define their own filtering, where this may comprise
several nested Select statements.

Another example is the Generalized Model Subset Definition Schema developed by
Weise et al (2003). Again, this achieves a filtering of the entire IFC model to a partial model
using a declarative approach. During the filtering, objects are filtered first at the instance
level, and then processed on the defined model view definition. Due to this declarative
approach, ad-hoc queries which can be performed which filters according to attribute and
type values.

Object Interaction Query (oIQ) by Ogueta and Carlsson (2014) introduces the idea of
context awareness to evaluate the interactions between building components in BIM. While
it is not written in IFC, it queries a proprietary BIM database to extract the necessary
quantities and parameters. oIQ makes a clear distinction between the direct and indirect
parameter queries needed for context aware evaluation, and demonstrate the use of this in a
design example.

BIMQL (Mazairac and Beetz 2013) lies at the confluence of PMQL and SPARQL, and
is able to work on complex IFC models which reside on BIMServer. Created with a graph
based mechanism, it is able to traverse complex referential models. It potentially features a
Create, Read, Update and Delete functionality, even though only the Create and Update
features are currently implemented.

QL4BIM extends the basic SQL query mechanism by providing a spatial semantic based
on topological predicates (Daum and Borrman 2014). The topological predicates are
developed based on octree based approaches with Boundary Representation (Brep) methods.

410

This enhances the query semantic, allowing more expressive partial model extraction to be
carried out.

The above technologies represent the current state of the art in the extraction of partial
models from IFC models. However, they are not able to provide a means of quickly
specifying a high level specification, required for a construction requirement.

Building Component Specification Language Framework

Development of the Specification Language

The development of any user driven language has to be easy to use, since users are not
required to have any prior programming knowledge. To this end the language has to have a
simple and intuitive syntax and structure, with references to natural language. This paper is
concerned with the theoretical framework for such a language and how it can be used in the
automated generation of construction requirements from an IFC data format.

Figure 3: BCSL Workflow

Figure 3 shows the usage flow of the BCSL. BCSL distinguishes IFC data from the

BCSL language. The IFC file contains the project specific IFC data, while the BCSL
processor contains the generic specification language syntax. The user enters simple English
like commands via the BCSL editor/parser. The result of this is an output that can be
understood by the subsequent module, the Language Executor. The Language Executor
reads an IFC file and produces construction requirements.

IFC File Data
IFC comprises 8 domains: - Building control, Plumbing and Fire protection, Structural
Elements, Structural Analysis, HAVC, Electrical, Architecture and Construction
Management. Not all domains are present in every IFC file. The domains exported to an IFC
file depends on the contents of the original files. This paper focuses on the major structural
elements necessary for construction (Beam, Column, Slab and Wall), but may be extended
as required.

User
Requirements

BCSL
Editor/
Parser

BCSL Parsed
File

BCSL
Executor

Construc on
Requirements

IFC Format
file

411

The basic data exported from these components is their geometrical description together
with their location. Additional parameters, if entered in the exporting software, will also be
in the IFC file. These parameters are not mandatory and so may be absent. Two types of
additional parametric data are identified: Direct and Indirect parameters. Direct parameters
are directly extracted from the IFC element. Indirect parameters are derived from the
geometric description of the building object or between a set of objects, and subject to further
manipulation. For example, the weight of an element is an indirect parameter, derived by
assuming a notional density for the material of the component, multiplied by its volume.

Table 1: Building Elements and Their Parameters (Indirect Parameters in Italics)

Building
Element

Parameters Exported

Beam Nominal Length, Cross Section Area, Outer Surface Area, Total Surface
Area, Gross Volume, Net Volume, Gross Weight, Net Weight

Column Nominal Length, Cross Section Area, Outer Surface Area, Total Surface
Area, Gross Volume, Net Volume, Gross Weight, Net Weight

Slab Nominal Width, Perimeter, Gross Footprint Area, Net Footprint Area, Gross
Volume, Net Volume, Gross Weight, Net Weight

Wall Nominal Length, Nominal Width, Nominal Height, Gross Footprint Area,
Gross Side Area Left, Net Side Area Left, Gross Side Area Right, Net Side
Area Right, Gross Volume, Net Volume

IFC components do not only have the basic parameters as shown in Table 1, but have

inverses attributes. The formal definition of an inverse attribute is, “Inverse attributes are
excluded from files but define queries for obtaining related data and enforcing referential
integrity. Inverse attributes are similar to the term ‘navigation property’ in entity-relational
programming frameworks.” (Liebiech 2013).

The inverse attributes that are of interest in this paper are, ConnectedTo, ConnectedFrom
which are self-explanatory. The inverse attribute IsConnectionRealization is not considered
as this is a connection that requires additional information to make the connection.

Structure of BCSL
The BCSL consists of basic constructs that are derived from natural language, thus making
it easily comprehensible and intuitive. The underlying concept of the BCSL is that of Sets.
Each of the four main structural components of interest, Beam, Column, Slab and Wall are
thought of as sets. There is a BEAMSET, COLUMNSET, SLABSET and WALLSET. Each
set retrieved is given a name, and the conditions of retrieval are specified. To retrieve a set
of building components, the language statement has the following format:

SET name: ELEMENT_1.LEVEL(n) Relationship ELEMENT_2.LEVEL(n+1) [WHERE
n=i TO n = j]

The capitalized embolden words are language keywords, while the italicized words are
variables or attributes.

• SET is a placeholder for a set of reserved language keywords. In this paper, the
allowable SET comprises COLUMNSET, BEAMSET, WALLSET, SLABSET and
ELEMENTSET. The SET identifies the type of element to be retrieved.

• name is the name of the extracted set. This can be any name the user chooses. This
is the retrieved set name.

412

• ELEMENT_1.LEVEL refers to a specific building component at a specific building
level. An example is COLUMN.LEVEL. The COLUMN component is a building
element from the IFC Model.

• n, n+1 are variables of the levels within the structure. Within the IFC file the
elevations have arbitrarily named, without a globally standard convention. To make
the system usable, levels are derived from information in the IFC file. Level 1 is
considered the level with the lowest elevation in the construction.

• [WHERE n=i TO n = j] is optional. The value n may be a defined value, e.g. 10 or
may be left as n, in which case the WHERE key word could be used. However, if the
level is defined as n and there is no WHERE keyword, the language defaults to i=1
to j=maximum level -1. We further restrict i to be always less than j.

• Relationship is the topological relationship between elements, for example,
ConnectedTo and ConnectedFrom.

To retrieve a set of columns which supports beams in a 10 storey building, the following

specification can be used. The language iterates through the ten levels in the building to
retrieve all columns that fulfil the condition that they are connected to beams.

COLUMNSET SET0: COLUMN.LEVEL(n) ConnectedTo BEAM.LEVEL(n+1) [WHERE
n=1 TO n=10]

Not all columns support beams in the LEVEL immediately above. To retrieve the set of
columns that fulfil this condition the following statement would be used.

COLUMNSET SET1: COLUMN.LEVEL(n) ConnectedTo BEAM.LEVEL(m) [WHERE
n=1 TO n = j-1] [WHERE m=n+1 TO m = j]

Columns associated with beams have been identified in the COLUMNSET statement
above. Beams associated with slabs by means of support are retrieved using the following
BEAMSET statement.

BEAMSET SET2: BEAM.LEVEL(n) ConnectedTo SLAB.LEVEL(n) [WHERE n=1 TO n
= 10]

Slabs may be extracted as a separate set, using the same techniques above. Omitting the
attribute simply retrieves all elements in a particular level.

SLABSET SET3: SLAB.LEVEL(1)
SLABSET SET4: SLAB.LEVEL(n) [WHERE n=1 TO n = 10]

The above language allows low level specifications of building components to be
generalized to a higher level, by providing an iterative mechanism. This addresses the
identified research challenge of being able to automatically scale low level specifications
from a higher level one.

Boolean Manipulation of Sets
Having identified the sets of components, Boolean algebra can be used to extend the
information. The various Boolean operators have also been incorporated as language
keywords for implementation. These include: UNION, INTERSECT and NOT. For example,

413

to obtain a full set of connectivity among columns, beams and slabs, the following
construction would be used.

ELEMENTSET elemset: COLUMNSET SET0 UNION BEAMSET SET2 UNION
SLABSET SET3

Not all beams support slabs. To retrieve those that do not support any slab the following
BEAMSET statement is used. This returns the complement of the BEAMSET SET2, where
an intermediate BEAMSET SET5a is called, and a set difference operation carried out to
remove all elements in BEAMSET SET2 from SET5a.

BEAMSET SET5: BEAM.LEVEL(n) NOT ConnectedTo SLAB.LEVEL(n) [WHERE n=i
TO n = j]

BEAMSET SET5a: BEAM.LEVEL(n)

The Boolean manipulation allows complex specifications of the IFC model to be created.
This allows partial models comprising specific building components to be generated, which
will be used to define the spatial elements within the construction requirement.

Conclusion
Construction Requirements represent the key preconditions for construction to take place,
and omission of these requirements may cause delays in the construction schedule. However,
properly defining each and every construction requirement is a tedious process due to the
numerous requirements available. A method of generalizing the elements to facilitate the
representation of these requirements is thus needed.

This paper proposes a Building Component Specification Language (BCSL) to
overcome this problem. The key innovation of the BCSL lies in the iterative method used
which allows the scaling of high level to low level specifications.

Future work involves developing a more general representation of the topological
relationships between the elements. This will enable a spatial semantic to facilitate the
development of construction requirements from a full IFC model. The authors will also
demonstrate the approach on a full-fledged construction method. The demonstration of this
is too long to include in this paper.

References
Abbott, E. L. S., Liu, Z., Chua, D. K. H., and Lim, C. L., 2010. Extraction of Ship Product

Design Data. In Proceedings of the 2010 International Conference on Engineering,
Project, and Production Management.

Adachi, Y., 2003. Overview of partial model query language. In: Proceedings of the 10th
International Conference on Concurrent Engineering.

Chua, D. K. H., Nguyen, T. Q., and Yeoh, K. W., 2013. Automated construction sequencing
and scheduling from functional requirements. Automation in Construction, 35, 79-88.

Chua, D. K. H., and Yeoh, K. W., 2010. PDM++: Planning framework from a construction
requirements perspective. Journal of Construction Engineering and
Management, 137(4), 266-274.

Daum, S., and Borrmann, A., 2014. Processing of Topological BIM Queries using Boundary
Representation Based Methods. Advanced Engineering Informatics, 28(4), 272-286.

Liebich, T., 2013. [online]. Available from: http://www.buildingsmart-
tech.org/ifc/IFC4/final/html/index.htm [Accessed 17 April 2015].

414

Mazairac, W., and Beetz, J., 2013. BIMQL–An open query language for building
information models. Advanced Engineering Informatics, 27(4), 444-456.

Ogueta, C. S., and Carlsson, M., 2014. Object Interaction Query: A Context Awareness Tool
for Evaluating BIM Components’ Interactions. Blucher Design Proceedings, 1, 269-273.

Weise, M., Katranuschkov, P., and Scherer R.J., 2003. Generalized model subset definition
schema. In: Proceedings of the 20th CIB-W78 Conference on Information Technology in
Construction.

Yeoh, K.W., 2012. Construction Requirements-Driven Planning and Scheduling with
Spatial-Temporal Constraints using an Artificial Intelligence approach. Thesis (PhD),
National University of Singapore, Singapore.

Yeoh, K.W., and Chua, D. K. H., 2014. Representing Requirements of Construction from an
IFC Model. Computing in Civil and Building Engineering (2014): pp. 331-338.

415

