
172

A JIT Algorithm for Offshore Rig Assembly Sequencing

Ernest Abbott1 and David Chua2

Abstract

Lean principles in production are synonymous with the Toyota motor company, probably
the most productive and innovative car manufacturer in the world. However, in a
construction environment Lean principles are not so easy or obvious. The major difference
between a production and a construction environment is the synchronicity of the work and
the longer time horizons. In the production environment the product stages are often short,
whereas in the construction environment they are long.

Constructing offshore rigs is a long process involving many stages where the correct
assembly sequence is paramount. Offshore rigs are composed of units, referred to a blocks.
The building of the block involves sub-blocks; each sub-block differs in size, shape and
construction time. At the block level, with more than one team of workers constructing the
sub-blocks, it is possible to apply Lean principles to the sub-block work so that they arrive
at the block assembly point with the minimum of waiting time.

A number of Greedy based sequencing algorithms have been developed by way of a
compare and contrast. The Greedy sequencing algorithm augmented with back-tracking
coupled with post schedule allocation reordering has proved to be a good one within the
bounds of the random nature of the data.

Keywords: Assembly sequence, lean construction, offshore rig, sequencing algorithms.

Introduction

Lean principles in production have been successfully applied in a number of industries,
most notably the car industry and consumer electronics industry. Toyota has been credited
with developing the modern Lean production approach. Toyota identified seven areas of
waste in manufacturing, overproduction, defective product, high inventories, non-value
action, unnecessary or superfluous processes, transportation of materials and idle time for
material and people (Lang et al., 2001). These concepts of Lean production have
permeated other sections of industry. This present work is to apply, as far as possible, lean
principles to the construction of off-shore rigs, and in the process derive a just-in-time
algorithm.

Lean production has an emphasis on efficiency with the aim of eliminating waste at all
stages of the production process. The aim of Lean production is to add value to the produce
at every stage of its process. Waste, in Lean manufacturing, increases the time of
production or increases the cost of production, but does not add value to of the product
(Liker & Lamb, 2002). Lean production is not an end in itself (Womack, James. P. &
Jones, 1994), but part of a process that stretches the full length of the value chain.

One characteristic of Lean production is the continuous supply of parts; this eliminates
time wasted in waiting for parts to arrive. This continuous supply is better known as Just-
in-Time. This approach differs from the traditional method of supplying parts in a

1 Research Engineer, Dept. of Civil & Environmental Engineering, National University of Singapore, Block

E1A #07-03, No.1 Engineering Drive 2, Singapore, 117576, (65) 65164643, FAX (65) 67791635, Email:
ceeaels@nus.edu.sg

2 Associate Professor, Dept. of Civil & Environmental Engineering, National University of Singapore, Block
E1A #07-03, No.1 Engineering Drive 2, Singapore, 117576, (65) 65162295, FAX (65) 67791635, Email:
ceedavid@nus.edu.sg

173

continuous production process, where parts are produced at one stage of the process for the
next, irrespective of the requirement of the next stage. This is called a push system and
leads to high levels of inventory (Womack, J. P. et al., 1991).

Lean principles, in part, have been applied in the Japanese shipbuilding industry
leading to an improvement in productivity of 150% in the 30 years from 1965 to 1995
(Liker & Lamb, 2002). Liker and Lamb do advocate organizing a shipyard by “product
line”. A similar approach has been adopted by Lang et al. (2001) in a theoretical simulation
of a Lean shipyard.

In the construction of offshore rigs, the Lean principle of continuous supply, along the
lines of those identified by Liker and Lamb (2002), are not easily implemented. In
shipbuilding blocks are standard, whereas for offshore rigs, block repeatability is at the
best rare and often unique in construction. However, in the final assembly of the block,
some progress can be made towards reducing waste in terms of waiting time and double
handling of sub-assemblies.

Block Assembly

Liu et al. (2011) recognizes the inherent challenges of having long production lead times
for a product, such as blocks for Offshore rigs. They use aggregate production planning in
the area of workforce levelling as well as inventory usage. They achieve their objective
using a multi-objective genetic algorithm. Their work deals with smoothing the work flow
of block construction, and as with Liker and Lamb (2002), their objective is to construct a
grand block just-in-time. The work of the present research is to deal, not at the macro level
as is being done by Liu et al. (2011) and Liker and Lamb (2002) but with the micro level of
the sub-assembly construction so that it arrives at the final assembly point just-in-time, or
close to just-in-time.

To have a better grasp of the issues involved a brief description of the block parts and
construction is given. The Offshore rigs are constructed of units called blocks. The blocks
are composed of a number of different part types: plates, brackets, stiffeners, flanges and
bulkheads. The plate is the foundation for the other parts. A plate with one or more other
parts welded to it is called a sub-assembly. Two or more sub-assemblies welded together is
called a sub-blocks. Sub-blocks (& sub-assemblies) are welded together to form a block.

The first stage of building a block is to create a base panel from the various plates.
These panels are cut out from a much larger sheet of steel using a laser cutter. The laser
cutting process is fast compared with welding of the seams, so does not present a problem
in ensuring that the plates arrive just-in-time at the location where they are welded together
in a processes known as union melt.(see Figure 1).

Figure 1. Creating a Base Panel

174

The next step in the construction process is the welding of stiffeners to the base panel.
Stiffeners are special steel profiles sourced from an outside supplier which are cut to the
required length in the shipyard. The shipyard has amply stock of these standard parts. As
the only process required here is the cutting to length, there is no problem in ensuring that
these arrive at the point of requirement just-in-time.

Figure 2. Stiffeners Add to Base Panel

The next stage of the construction process is the assembling of the various sub-assemblies.
The order of assembly has already been determined, for example Abbott and Chua (2013)
for an outline on how this is achieved. The welding of the sub-blocks to the base panel is
in two parts. The sub-assemblies are fitted and tack welded into place. The final welding
only takes place after all sub-blocks have been fitted and tack-welded into place. The
fitting sequence is not the same as the welding sequence. The fitting sequence of a sub-
block and/or sub-assembly is determined by a number of factors, size, weight, position
within the block, being some of them. (The actual details are beyond the scope of this
paper.) The final welding is from the centre of the block outwards. This is done so as to
minimize the distortion caused by the welding process.

Figure 3. Completed Block

The work content of each sub-block/sub-assembly differs, yet they have to arrive in a

particular predetermined assembly sequence. This research is concerned in developing

175

some algorithms with a number of objectives, to minimize the makespan, to minimize the
waiting time at the final assembly point and to minimize double handing of parts.

Block Assembly Sequence and Just-in-Time

The basic requirement for a just-in-time block assembly is that the sub-block/sub-assembly
arrives at the assembly point the moment they are required. The construction time of the
sub-block/sub-assembly is considerably longer than the assembly time. The fitting and tack
welding of a sub-block in its final location takes from 30 to 60 minutes. Even if this is
extended, it is multiple times faster than the construction of the sub-block/sub-assembly. A
sub-block/sub-assembly can take several hours to several days to complete.

The construction of a sub-block/sub-assembly is the task of a team, which usually
consists of a couple of workers. There are a number of reasons for this: the size of the
component being constructed and safety during the welding process. With a limited
number of teams and a large number of sub-blocks/sub-assemblies all of which have
different construction times, it is impossible to achieve just-in-time assembly.

A computer simulation was performed to demonstrate this point. The simulation
consist a number of sub-blocks ranging from 10 to 300. The construction time for each
sub-block was randomly generated in the range 2 to 30 time units. The longest construction
time was taken as the limiting value. All other sub-blocks were grouped so that no group of
sub-blocks had a total construction time greater than the longest sub-block construction
time. This grouping does not take into account the required assembly sequence, since the
purpose of the simulation is to get the minimum number of teams for JIT assembly. For
each set of sub-block the process was repeated 60 times, this should remove any ‘freak’
values that could occur from using the randomly generated values. The average of the 60
repetitions was recorded; the results are in Table 1.

Table 1. Simulation Results for Minimum Number of Teams for JIT Construction

No. of Sub-Blocks 10 20 30 40 50 60 70 80 90 100

Avg. No. Teams 6.93 12.73 18.43 24.30 29.22 34.63 40.80 46.23 51.23 57.92

Ratio 0.69 0.64 0.61 0.61 0.58 0.58 0.57 0.58 0.57 0.58

No. of Sub-Blocks 110 120 130 140 150 160 170 180 190 200

Avg. No. Teams 62.88 67.92 73.40 78.57 83.93 89.27 94.62 100.15 106.25 111.52

Ratio 0.57 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56

No. of Sub-Blocks 210 220 230 240 250 260 270 280 290 300

Avg. No. Teams 117.62 122.00 127.92 133.38 139.20 143.28 150.07 155.18 160.87 166.08

Ratio 0.56 0.55 0.56 0.56 0.56 0.55 0.56 0.55 0.55 0.55

The simulation results demonstrate that with a small number of teams JIT production is

not achievable. However, a measure of JIT assembly is possible; it is that it will not be
100% JIT.

Developing the Algorithm3

 As has been mentioned, the task of constructing a sub-block/sub-assembly is assigned to a
team. This naturally leads to scheduling the work among the teams treating each team as
parallel machine. For this research each team is considered to possess an identical skill set.

3 The notation used here is that of Graham et al. (1979) which is now the standard notation

176

The work is carried out without pre-emption. Each sub-assembly/sub-block is completed
before work begins on the next.

It has been pointed out (Blazewicz et al., 1983; Chen et al., 1988; Karger et al.,
2010) that scheduling with parallel identical machines without pre-emption is an NP-hard
problem. It has been suggested (Mosheiov, 2001), however, that flow-time minimization
on parallel identical machines, albeit only two parallel identical machines, is polynomial
solvable. The solution is far too problem-specific for this research, since it posits a learning
effect, which may be possible in construction environments that deal with repetitious units,
which is not the case in the construction of the offshore rig. Further, the computation
resource required to resolve this for only two parallel machines is 4()O n . The focus here
will be on an algorithmic approach. The problem under investigation in this research is
quite constrained in that there is a predefined output sequence; hence the choice of work
allocation is more limited which makes it possible to use an algorithm to resolve the
problem. Further, this is not really a shop-flow issue, as the various sub-blocks are
confined to one process, as it were, on any ‘machine’, and then is ready for assembly.

The most obvious method is the use a Greedy algorithm to allocate work among the
teams. Other algorithms used for identical parallel machines in a machine shop
environment, such as Longest Processing Time First (LPT), are not suitable here as this
algorithm is more focussed on the minimization of the makespan. For LPT the completion
order of the jobs is of no relevance, however, in the assembly of sub-assemblies for blocks
for Off-shore rigs the order the jobs are completed in is of great importance.

Each algorithm that is developed depends on the objective, although one objective is to
adopt Lean principles, minimizing the makespan for the schedule is clearly an important
objective.

Makespan is defined as max maxS S
j jC C of a schedule S to be the maximum

completion time of any job in S, where S
jC is the completion time of job j in schedule S.

For m machines where the processing time for job is jj p , then *
max

1

n
j

j

p
C

m

 where n is

the number of jobs, *
maxC is the makespan of the optimal schedule and

*
max for all jobs .jC p j That is makespan for the whole assembly process cannot be less

than the sum of the average processing time for all the individual jobs.
A greedy algorithm for identical parallel machines assigns the next available job to the

next free machine. The sub-blocks are ordered in their required assembly sequence. Figure
4 and Figure 5 illustrate the process. Job 10 is successively assigned to each machine and
the completion time, 10

SC , of the schedule is calculated. The machine with 10min SC is the

one to which the job is assigned. Figure 5 illustrates the machine that job 10 is finally
assigned to.

 Figure 4. Test Assignment of Job

Figure 5. Final Assignment of Job

177

More formally, the ith job is added to the machine with the minimum completion time, i.e.
the ith job is added to min mC , where mC is the completion time for machine m. Since the
ith job is added in this wall, the overall all schedule is always going to be a minimum.

There is a possibility of improving the algorithm by applying a back tracking technique.
With back tracking the job is added to the minimum machine schedule, provided that when
it is added to the minimum machine schedule the maximum schedule is not exceeded. If
the maximum schedule is exceeded the job is swapped with the previously added job,
provided the overall schedule is now earlier than when the new job was added to the
minimum machine schedule.

If i jobs have been added to the schedule, using the greedy algorithm, the ith job was
added to the machine with a completion time earlier than i iC p . Similarly for the i+1th

job it is added to the machine with a completion time earlier than 1 1i iC p  .

When the ith job was added to the schedule, it was added to the machine with the
shortest completion time, min mC . This machine is chosen irrespective of the work content
of job i.

The i+1th job is added to the schedule. If *
1 maxiC C  the addition of the job to the

assigned machine is accepted. There is no change in the expected waiting time between the
completion of job i and job i+1, i.e. 1i iC C  . If, however, *

1 maxiC C  then back tracking is

tested with ith job being replaced by i+1th job in the schedule. Following the replacement
of the ith job by the i+1th job, the ith is added to the schedule, which will be a different
machine, provided that '

1i iC C  where '
iC is the revised completion time for job i,

otherwise job i+1 is added as per the greedy algorithm.
The waiting time, if the ith and i+1th jobs are not swapped is given by

1 1

1

 if

 0 if
i i i i i

i i

W C C C C

C C
 



  
 

The waiting time, if the ith and i+1th jobs are swapped is given by
' ' '

1 1

'
1

 if

 0 if

i i i i i

i i

W C C C C

C C

 



  

 

When swapping ith and i+1th jobs, the condition for the swap was that '
1i iC C  . The

waiting time is zero time units. Without the swap the waiting time is 1 0i iC C   .

This is illustrated in Figure 6 and Figure 7. There are 10 sub-assemblies P1 to P10, with
varying construction time, shown in parenthesis. Sub-assembly P1 has a construction time
of 10 days. In the greedy algorithm the completion is at day 49, the total work is 91 days.
In Figure 7, sub-assembly P9 is constructed by team 1. This leads to a completion on day 46,
thus a saving of 3 days over the normal greedy schedule.

Figure 6. Results of Greedy Algorithm

178

Figure 7. Results of Greedy Algorithm with Backtracking

Backtracking with post sequence reordering is when all the jobs have been allocated to the
machines. The completion time of each job is compared to its required time. Job i+1 is
required after the job i has been assembled, but its construction completion may be earlier.
Figure 8 and Figure 9 serve as an illustration. Examining team 2, it can be seen that jobs
P2, P3 and P4 will be completed before job P1 is completed. This leads to a problem of
double handling. Jobs that are completed ahead of their required assembly time are placed
in a stack. In this example the stack would consist of jobs P2, P3 and P4. After P1 is
completed, jobs P3 and P4 would have to be removed from the stack in order to retrieve
job P2. This is inefficient work where the jobs are double handled. If job P3 is placed in a
new stack and job P4 is placed on top of it, the same situation arises when job P3 is
required.

To remove this double handing of jobs in line with lean principles, the sequence of
construction for jobs P2, P3 and P4, is reordered, as may be seen in Figure 9. With this
reordering, the stack now has job P2 on the top, so there is no double handling of
previously completed jobs when P1 is completed and P2 is required.

It needs to be noted that this reordering of the queue does not change the makespan for
the jobs; rather it improves the work flow and reduces the overhead of double handling of
the jobs.

Figure 8. Greedy Algorithm with Backtracking

Figure 9. Greedy Algorithm with Backtracking and Reordering

Each job has a start time, construction duration and required time. The start time and
construction duration need no explanation. The time a particular job is required is defined
as when the job is required at the assembly point. As here lean principles are being applied,
the job is required at the same time the previous job is required with the addition of the
fitting time. Since the construction time for a sub-assembly is comparatively long
compared with the fitting time at the assembly point, for scheduling purposes the fitting
time is ignored, hence the required for i+1th job is deemed to be at the finish time of job ith.

Figure 8 shows P1 finishing at time 12. P2 finishes at time 1, but is not required until
time 12; the same is true for Jobs P3 and P4. The jobs in team are ordered so that those
with the same requirement time are order in reverse required assembly sequence. Figure 9
shows the sequence of P2, P3, and P4 reordered as P4, P3, and P2.

179

An assembly has 2 time values: its completion time (CT) and its required time (RT).
The completion time is the point the assembly is completed, whereas the required time is
the point at which the assembly is required to be just-in-time.

For a part i, if RTi > CTi then the part is early. If RTi=CTi, the part is on time. RTi<
CTi the part is late.

The sub-blocks are order into their required assembly sequence. Then the algorithm is

processed:-

 1

1

Begin:

 For 1 to

 If

 set

 Endfor

End

i i

i i

i n

RT CT

RT CT









The sub-assembly is now ordered as follows:
 Team Number - Ascending
 Required Time – Ascending
 Original required sequence – Descending

Testing the Algorithm

To test the algorithm four computer models were developed in C#, the sub-block
construction times were randomised using a seed of 42, with range of 1 to 8 days. The
models were (a) greedy algorithm, (b) greedy algorithm with post reordering, (c) greedy
algorithm with backtracking only and (d) greedy algorithm with backtracking and post
reordering.

The following tables all have 30 items with a total work time of 99 days. The results are
shown for 2, 3, and 4 teams working on the construction.

Table 2. Greedy Algorithm Only

Teams
in

Stack
Max in
Stack

Total
Stack
Time

Avg.
Stack
Time

JIT
Items

% JIT
Items

Total
Waiting

Time

Avg.
Waiting

Time

Sequence
Changes

Optimum
Makespan

Makespan

2 7 2 12 1.71 11 36.67 45 1.5 0 49.5 50
3 13 4 28 2.15 16 53.53 30 1.0 0 33 35
4 15 6 37 2.47 21 70.00 22 0.73 0 24.75 27

Table 3. Greedy with Post Reordering

Teams
in

Stack
Max in
Stack

Total
Stack
Time

Avg.
Stack
Time

JIT
Items

% JIT
Items

Total
Waiting

Time

Avg.
Waiting

Time

Sequence
Changes

Optimum
Makespan

Makespan

2 7 2 15 2.14 17 56.67 45 1.5 4 49.5 50
3 13 2 32 2.46 21 70.00 30 1.0 4 33 35
4 15 1 35 2.33 24 80.80 22 0.73 7 24.75 27

180

Table 4. Greedy with Backtracking Only

Teams
in

Stack
Max in
Stack

Total
Stack
Time

Avg.
Stack
Time

JIT
Items

% JIT
Items

Total
Waiting

Time

Avg.
Waiting

Time

Sequence
Changes

Optimum
Makespan

Makespan

2 8 2 17 2.13 13 43.33 45 1.5 0 49.5 50
3 13 5 34 2.62 19 63.33 30 1.0 0 33 35
4 11 5 22 2 18 60.00 21 0.7 0 24.75 26

Table 5. Greedy with Backtracking and Post Reordering

Teams
in

Stack
Max in
Stack

Total
Stack
Time

Avg.
Stack
Time

JIT
Items

% JIT
Items

Total
Waiting

Time

Avg.
Waiting

Time

Sequence
Changes

Optimum
Makespan

Makespan

2 8 2 21 2.63 18 60.00 45 1.5 18 49.5 50
3 13 2 41 3.15 23 76.67 30 1.0 27 33 35
4 11 1 24 2.18 23 76.67 18 0.6 32 24.75 26

The column headings in the table have the following meaning:
#Teams = number of teams.
#in Stack = the total number of items that were ready early and place in a waiting stack
Max in stack= the maximum number of items in the stack at any one time
Total Stack Time= sum of the times all items spent in the stack.
JIT Items = items that were ready when required.
% JIT Items = the percentage of items that were JIT
Total Waiting Time = amount of time waiting for an item.
Avg. Waiting Time = average waiting time for all items .
Sequence Changes = number of items whose sequences were change
Optimum Makespan= total amount of work divided by number of teams
Makespan = number of days taken to complete all work for the team.

Analysis of Results

Table 6. Summary of % JIT Items
 Table 2 Table 3 Table 4 Table 5
Teams JIT Items % JIT

Items
JIT Items % JIT

Items
JIT Items % JIT

Items
JIT Items % JIT

Items
2 11 36.67 17 56.67 13 43.33 18 60.00
3 16 53.53 21 70.00 19 63.33 23 76.67
4 21 70.00 24 80.80 18 60.00 23 76.67

With this particular set of random data, it may be see that backtracking &/or post
reordering has an advantage in terms of increasing the number of JIT items. Comparing
Table 2 with Table 3 (Greedy only and Greedy with Post Reordering) there is an increase
in the number of JIT items. Further, with Post Reordering, there is a reduction in wasted
time since there is will not be double handling of items. Similarly, the same can be said in
comparing Table 2 and Table 4 and Table 2 and Table 5 data. There is a clear increase in
the JIT Items. The highest number of JIT items is when the Greed algorithm is augmented
with backtracking and Post Reordering.

Conclusions

Identical parallel machine theory from scheduling has been adopted to resolve the
sequencing of the construction of sub-assemblies with a limited number of work teams.

181

As good as the greedy algorithm is in this constrained problem, it may be improved in
many circumstances with the addition of backtracking. While it has been shown that JIT
may not be fully realised with a limited number of teams for work, some lean principles
may be applied to the construction process by using reordering following the completion of
the assignment of the construction sequences of the sub-assemblies. Although this does not
improve the makespan for the schedule, it does remove the need for double handling of the
sub-blocks and thus makes a step towards a better implementation of lean principles in the
construction of offshore rigs.

As with all algorithms and random input, there is no guarantee that it will give an
acceptable result on all occasions. The algorithms developed here may be seen as an
arsenal, in that the best one for the set of data may be chosen.

References

Abbott, E., & Chua, D., K. H.;. (2013, October 23-25 2013). The Application of
Polychromatic Set Theory in the Assembly Sequencing of Blocks for Offshore Rigs.
Paper presented at the Proceedings of the 4th International Conference on
Engineering, Project, and Production Management (EPPM 2013), Bangkok,
Thailand.

Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to
resource constraints: classification and complexity. Paper presented at the
Combinatorial Optimization Conference, 24-28 Aug. 1981, Netherlands.

Chen, B., Potts, C. N., & Woeginger, G. J. (1988). A Review of Machine Schedling:
Complexity, Algorithms and Approximations: Kluwer Academic Press.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979).
Optimization and approximation in deterministic sequencing and scheduling: a
survey. Discrete Optimisation, Aug. 1977, II, 287-326.

Karger, D., Stein, C., & Wein, J. (2010). Algorithms and theory of computation handbook
(M. J. Atallah & M. Blanton Eds.): Chapman & Hall.

Lang, S., Dutta, N., Hellesoy, A., Daniels, T., Liess, D., Chew, S., & Canhetti, A. (2001).
Shipbuilding and Lean Manufacturing - A Case Study. Paper presented at the THE
SOCIETY OF NAVAL ARCHITECTS AND MARINE ENGINEERS. Conference
Paper retrieved from

Liker, J. K., & Lamb, T. (2002). What is lean ship construction and repair? Journal of Ship
Production, 18(3), 121-142.

Liu, Z., Chua, D. K. H., & Yeoh, K. W. (2011). Aggregate production planning for
shipbuilding with variation-inventory trade-offs. International Journal of
Production Research, 49(20), 6249-6272. doi: 10.1080/00207543.2010.527388

Mosheiov, G. (2001). Parallel machine scheduling with a learning effect. 52(10), 1165-
1169.

Womack, J. P., Jones, D., & Roos, D. (1991). The Machine That Changed the World: The
Story of Lean Produciton.

Womack, J. P., & Jones, D. T. (1994). From lean production to lean enterprise Harvard
Business Review 74(Mar-Apr), 21.

