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Abstract 

 
Revenue Management (RM) is an essential strategy for industries having fixed perishable 
resources to maximize overall revenue by allocating the available resources to the right 
customers at the right price at the right time. Overbooking is one of the RM tools for hotel 
revenue management that helps a hotel manager to decide when and how much extra number 
of rooms to sell. Overbooking arises as some of the customers may not eventually show up 
(so called “no show”) on the booking date, while others may cancel or amend their bookings 
in the last minutes. The objective of this paper is to develop overbooking models to determine 
the optimal number of overbooking for hotels having one and two different types of rooms. 
We prove that for hotels with only one type of room, there exists a closed form solution to 
guarantee the optimal number of overbooking, depending on the cost of walking customers to 
other hotels, the cost of unsold rooms and cancelation distribution observed in the past. For 
hotels with two types of room, we prove the convexity structure and identify equations to seek 
the number of overbooking for low-price and high-price rooms. We also provide key 
comparative statics on how model parameters impact the optimal decisions under different 
scenarios. 
 
Keywords: Overbooking, Hotel revenue management, Inventory management 
 

 
1. INTRODUCTION 
 
      Revenue Management is an essential strategy to maximize revenue for industries with 
limited resources. Revenue Management (defined shortly as “RM”) is extensively applied to 
manage consumer behaviors (Anderson and Xie, 2010), by utilizing predictable information 
to calculate appropriate price and time to sell resources for different sections of customers 
(Haddad et al., 2008). Revenue management was pioneered in the airline industry, and then it 
was widely practiced in other industries such as hotels, cruise lines and rental cars, etc. (Cross, 
1997).  
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      Hotel industry is one of business sectors that has grown continuously every year with 
intensive competition. Hotels can benefit from RM strategy to increase revenue by balancing 
their demand and using variable prices, that is selling the right room to the right person at the 
right time for the right price (Talluri and Ryzin, 2005). An example of hotel RM can be 
presented as a system, illustrated in Figure 1. The process starts when a customer places a 
booking request, which is recorded via the hotel’s revenue management system. This 
functional system consists of four basic components: data and information, hotel revenue 
centre, RM software and RM tools. All elements collaborate together to create the determinate 
process of the RM optimization. The operational results from the RM process, expressed in 
Figure 1, are the number of rooms, category of rooms, the specific booking element from the 
booking request status (confirmed/rejected), price rates, duration of stay, cancellation and 
amendment conditions. Afterwards, the hotel management team can consider all results to 
make a proper decision; to handle the demand of customer’s reservation. 

 

 
           Figure 1: Components of hotel revenue management system.   

 
      For service industry like hotels, reservations are placed in advance and the hotel 
manager must cope with the problem of no-shows, i.e., customers fail to show up after 
making a reservation. It has been revealed that even if the hotel is assured of payment and 
there are penalties for oversales, the walk-in bookings cannot overcome the loss of 
reservations from late cancellations and no-shows. A method that hotels can reduce their costs 
due to revenue-losing no-shows is to allow overbooking, which is one of the revenue 
management tools. It was found in the literature that if hotels can well manage the 
overbooking system, overbooking can help increase approximately 20% of the total revenues 
(Vinod, 1992).  
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  Overbooking means the hotel accepts customer’s reservations more than the number of 
existent rooms. And then they expect that the quantity of overbooking will equal the number 
of canceling or amending rooms in the last minutes. Therefore, the hotel management team 
must carefully plan and calculate the right room units to allow overbooking (Hadjinicola and 
Panayi, 1997; Ivanov, 2006; Koide and Ishii, 2005; Netessine and Shumsky, 2002; Pullman 
and Rogers, 2010).  
     There have been several proposed approaches to calculate the optimal number of rooms 
to be allowed for overbooking. Netessine and Shumsky (2002) developed a method to find the 
number of rooms to be overbooked for one-type room hotel. However, their research did not 
consider various types of overbooking distribution and more complicated types of room cases. 
Ivanov (2006) proposed a simple method to find the optimal number of rooms to be 
overbooked for hotels with two different room types. Nevertheless, his decision model did not 
consider the marginal cost for each room unsold caused by no shows and the marginal cost for 
each walking guest. Thus, this paper’s objective is to develop overbooking models for the 
hotels having both one and two different types of room. The objective cost function presented 
in this paper considers incurred costs from both leftover rooms and insufficient rooms in 
different manner as compared to existing papers proposed in the literature.  

  The goal of overbooking models presented in this paper is the find the optimal number 
of booking for each type of rooms that can minimize the total cost. The expectation of total 
cost consists of two main part:   

1. The cost incurred for leftover hotel rooms caused by no shows or late cancellation. That 
is the cost of opportunity losing for rooms reserved but not occupied.  

2. The cost incurred in case of having insufficient rooms (over-sales); the number of 
arrived reservations is greater than the number of rooms available. 
 
      This paper is organized as follows. In the next section, we present model description 
and formulations, as well as theoretical results of overbooking models for hotels with one and 
two types of rooms. Computational experiments on how solutions are affected by key model 
parameters are explored in Section 3. We conclude by summarizing important results and 
providing managerial insights in Section 4. The proofs of all results are provided in the 
Appendix. 
 
2. OVERBOOKING MODELS 
 This section describes the idea of overbooking models development for hotels, 
having one type and two types of rooms. The main assumptions of this research are as 
follows: 
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1. The distribution of the customers who reserved but did not show up or made a late 

cancellation can be obtained from information in the past. Probability Density Function 

and Cumulative Density Function can be found accordingly. 

2. If hotels do not have enough rooms for every customer that booked in, they can offer them 

upgraded rooms (rooms with higher price than what customers pay for). But if there is not 

enough room for every customer, hotels have ability to outsource the same level of rooms 

from other hotels nearby. The rooms replacement are as follows: 

- If a customer reserved a high-price room, but there are only low-price rooms 

left. The hotel will need to outsource a comparable room from associated 

hotels in the area. 

- If a customer reserved a low-price room, but there are no low-price rooms left. 

We can classify this situation in two cases below: 

- If there are some high-price rooms left, the hotel can upgrade and offer 

a high-price room to the customer. 

- If there are no available high-price rooms, the hotel will need to 

outsource a comparable room from associated hotels in the area. 

 

3. When there are unsold rooms from no-show customers, the hotel misses opportunity to 

sell that room to other customers and it is considered as the loss of unsold rooms. When 

there are not enough rooms for every reserved customer (over-sales), the hotel needs to 

offer a deep discount to each customer sent to other hotels in the area. The loss in the later 

case is assumed to be higher than the first (loss of unsold rooms) as it is related to brand 

image and other difficulties of walking customers.  

From the assumptions described above, we formulate overbooking models to determine 
the optimal number of rooms to be overbooked for hotels with one type and two types of 
rooms, respectively. 
 

2.1 Hotels with one type of rooms 
 
 In this section, we present the overbooking model for hotels with only one type of 
rooms, i.e., all rooms are identically priced. Let X be the number of rooms cancelled or no 
show, f(x) and F(x) be the probability density function and the cumulative density function of 
X, respectively. Define r as the average loss of revenue per each room unsold each night that 
are caused by no show, and C as the average cost incurred for each room that the hotel need to 
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send customers to other associated hotels nearby (over-sales). Let the decision variable, Q, be 
the number of the overbooking rooms.  
      The overbooking model considers the loss of revenue and cost from the following two 
possible cases: (1) unsold rooms, (2) over-sales. If the first case (unsold rooms) happens, it 
means the number of rooms reserved (but customers do not show up) is more than the number 
of overbooking rooms (X > Q). Let TCX>Q be the expectation of total loss from the case of 
unsold rooms (X >Q) and it can be written as: 

( ) ( )X Q
Q

TC r x Q f x dx


   . 

The second case (over-sales) means that the number of customers who reserved but 
did not shown up is less than or equal to the number of overbooking rooms ( )X Q . 
Therefore, the hotel’s expected total cost incurred from sending customers to other hotels 
nearby is:   

0

( ) ( )
Q

X QTC C Q x f x dx   . 

Let TC be the expectation of total loss of revenue and cost of over-sales incurred. It can be 
written as: 

X Q X QTC TC TC  
0

( ) ( ) ( ) ( )
Q

Q

r x Q f x dx C Q x f x dx


     . 

Theorem 1. The optimal number of the overbooking rooms (for hotels with one room type) 
can be determined by the following equation: 

*( ) rF Q
C r




. 

      Theorem 1 provides an equation to find the optimal number of overbooking rooms, 
The proof of Theorem 1 (convexity property and the first order condition derivation) can be 
referred in the Appendix. It can be noticed that the optimal number of overbooking depends 
on the ratio of r andC r . When C (the average cost incurred for each room over-sold that 
the hotel need to send customers to other hotels nearby) increases, it is more beneficial to 
reduce the number of overbooking rooms 

*( )Q . On the other hand, when r (the average loss 
of revenue per each unsold room caused by no show) increases, it is more beneficial to 
increase *Q .  
 

2.2 Hotels with two types of rooms 
 

      In this section, we present the overbooking model for hotels with two types of rooms: 
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high and low price. This usually happens for large hotels where they offer standard rooms 
with lower prices, as well as some deluxe rooms with higher prices. Let i represent the type of 
rooms ( 1i   refers to low-price rooms and 2i  refers to high-price rooms). Let Xi be the 
number of rooms cancelled or no show for type-i rooms, fi (xi) and Fi (xi) be the probability 
density function and the cumulative density function of Xi, respectively. Define ri as the 
average loss of revenue per each type-i room that is unsold each night that are caused by no 
show, and Ci as the average cost incurred for each over-sold type-i room that the hotel need to 
send customers to other hotels nearby. Let the decision variable Qi be the optimal number of 
the overbooking type-i rooms. 

 The overbooking model for two types of rooms considers the loss of revenue for 
unsold rooms as well as the cost of having over-sales. Having more than one type of rooms in 
this case, there are four possible situations for the values of X1 , X2 , Q1 , Q2 , as shown in 
Table 1. 
                Table 1: Four possible situations of two types of room 

  
 

 

 
      
 
 
 

 
 In situation 1 and 2, X2 > Q2 which means there are some unsold high-price rooms  

left since the number of high -price rooms reserved and then cancelled (or no show) is larger 
than the number of high -price rooms the hotel overbooked. The expected loss to the hotel can 

be written as: 
2

2 2 2 2 2 2( ) ( )
Q

r x Q f x dx


 . 

In situation 1, we also have X1 > Q1 , which means there are some unsold low-price 
rooms since the number of low-price rooms reserved and then cancelled (or no show) is larger 
than the number of low-price rooms that the hotel overbooked The expected loss to the hotel 

is: 
1

2 2 1 1 1 1 1 1(1 ( )) ( ) ( )
Q

F Q r x Q f x dx


  . 

 

  Situations         Values 

1 2 2X Q  and 1 1X Q  

 2 2 2X Q  and 1 1X Q  

 3 2 2X Q  and 1 1X Q  

 4 2 2X Q  and 1 1X Q  
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In situation 2, the high-price rooms are insufficient as X2 > Q2. There are two possible 
cases.  

1) If the number of insufficient low-price rooms is less than the number of unsold 
high-price rooms, the hotel can offer upgrades for all remaining customers. This 
loss can be considered as upgrading cost to offer more expensive rooms than what 
customers pay for. The expected loss in this case is as followed: 

  
1

2 2 1 1

2 1 2 2 1 1 1 1 2 2 1 2( )( ) ( ) ( )
Q

Q Q Q x

r r x Q Q x f x f x dx dx


 

      

2) If the number of insufficient low-price rooms is more than the number of unsold 
high-price rooms. The hotel can offer high-priced rooms to some customers until 
there are no available high-price rooms left. Then the hotel will need to outsource 
comparable rooms from associated hotels in the area to the rest of customers. The 
expected outsource cost can be computed by:   

  
1 2 1 2 2

2

1 1 1 2 2 1 1 2 2 1 2
0

( ) ( ) ( )
Q Q Q Q x

Q

C Q x x Q f x f x dx dx
  

    . 

Let TC[j] be the expectation of total cost from situation j . The expectation of total cost 
for situation 1 and 2 can be summarized as:  

2 1

[1] [2] 2 2 2 2 2 2 2 2 1 1 1 1 1 1( ) ( ) (1 ( )) ( ) ( )
Q Q

TC r x Q f x dx F Q r x Q f x dx
 

        

    
1

2 2 1 1

2 1 2 2 1 1 1 1 2 2 1 2( )( ) ( ) ( )
Q

Q Q Q x

r r x Q Q x f x f x dx dx


 

       

    
1 2 1 2 2

2

1 1 1 2 2 1 1 2 2 1 2
0

( ) ( ) ( )
Q Q Q Q x

Q

C Q x x Q f x f x dx dx
  

     . 

     
For situation 3 and 4, the high-price rooms are insufficient, since the number of 

high-price rooms reserved and then cancelled (or no show) is less than or equal to the number 
of high-price rooms overbooked (X2 ≤ Q2 ). Therefore, the hotel needs to send customers to 
stay in the associated hotels instead, no matter they have low-price rooms left or not. The 

expected loss to the hotel can be written as: 
2

2 2 2 2 2 2
0

( ) ( )
Q

C Q x f x dx . 

For situation 3, there are some unsold low-price rooms. Thus its expected loss of 
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revenue can be written as: 
1

2 2 1 1 1 1 1 1( ) ( ) ( )
Q

F Q r x Q f x dx


 . 

And for situation 4, the low-price rooms are insufficient. However, there are also no 
high-price rooms left. So remaining customers booked for low-price rooms need to be sent to 
other associated hotels nearby. The expected cost from outsourcing the low-price rooms is: 

1

2 2 1 1 1 1 1 1
0

( ) ( ) ( )
Q

F Q C Q x f x dx . 

Thus, the expectation of total cost for situation 3 and 4 can be summarized as: 

2 1

1

[3] [4] 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Q Q

Q

TC C Q x f x dx F Q r x Q f x dx F Q C Q x f x dx


          

Considering all situations (1 to 4), the expectation of total cost is equal to:     

[1] [ 2 ] [3 ] [ 4 ]T C T C T C  
    

 

     2 1

2 2 2 2 2 2 2 2 1 1 1 1 1 1( ) ( ) (1 ( )) ( ) ( )
Q Q

r x Q f x dx F Q r x Q f x dx
 

     
 

      
1

2 2 1 1

2 1 2 2 1 1 1 1 2 2 1 2( )( ) ( ) ( )
Q

Q Q Q x

r r x Q Q x f x f x dx dx


 

       

       
1 2 1 2 2

2

1 1 1 2 2 1 1 2 2 1 2
0

( ) ( ) ( )
Q Q Q Q x

Q

C Q x x Q f x f x dx dx
  

      

       

2 1

1

2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Q Q

Q

C Q x f x dx F Q r x Q f x dx F Q C Q x f x dx


        . 

(1) 
Lemma 1. The total cost function presented in equation (1) is jointly convex with respect to 

Q1 and Q2. 
 
Theorem 2. The optimal number of the overbooking for low-price and high-price rooms (Q1* 
and Q2* ) can be determined by the following two equations:  

  
2 1

2

1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 20 ( ) ( ) (1 ( )) ( ) ( )
Q Q

Q

C F Q F Q r F Q C F Q Q x f x dx


                      
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2 2

2 1 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2( )[ ( ) ( ) ( )(1 ( )) ( ) ( ) ( ) ]
Q Q

r r F Q Q x f x dx F Q F Q f Q x Q f x dx
 

          

and  

   
1

2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1
0

0 ( ) (1 ( ) ( )[ ( ) ( ) ( )]
Q

C F Q r F Q r r f x F Q Q x dx F Q         

       
1

1 1 1 2 2 1 1 1 1 1 2 2
0

[ ( ) ( ) ( ) ( )]
Q

C f x F Q Q x dx F Q F Q    . 

The proof of Lemma 1 and Theorem 2 can be referred in Appendix. Theorem 2 
provides two equations for determining the optimal number of overbooking for low-price and 
high-price rooms. The solutions of this model depend on model parameters, e.g., the 
distributions of number of rooms cancelled or no show for each room type, the average loss of 
revenue per each room type, the average cost of over-sales for each room type. We explore 
behaviors of the optimal solutions via computational experiments described in the next 
section.   

 

3. COMPUTATIONAL EXPERIMENTS 
      In this section, we perform computational experiments for the overbooking model of 
hotels with two types of rooms with a goal of understanding the properties of the optimal 
solutions and the model performance under different scenarios. Specifically, we consider how 
model parameters, namely (1) the average loss of revenue per each type-i room unsold each 
night that are caused by no show and (2) the average over-sales cost incurred for each type-i 
room that the hotel need to send customers to other hotels nearby, affects the optimal number 
of the overbooking for each type of rooms.  
      Consider a hotel having 140 rooms in total (100 rooms for type-1 with low price and 
40 rooms for type-2 with high price). Let X1 ~ uniform(0,50), and X2 ~ uniform(0,20).  
Figure 2 shows the optimal number of the overbooking for type-1 and type-2 rooms at 
different values of the average loss of revenue per each type-1 room unsold each night that are 
caused by no show (r1). We can notice that as the average loss of revenue per each type-1 
room (low price) unsold each night increases, it is more beneficial to increase the number of 
overbooking for type-1 rooms (Q1*). However, the increase of r1 has only a little impact on 
the number of overbooking for type-2 rooms (Q2*). It is more beneficial to increase Q2* when 
r1 increases, but as r1 is larger and larger, it does not cause any change in Q2* anymore. This 
is because when Q1* increase due to the increase of r1 , it is more likely that for the hotel to 
over-sale type-1 rooms. Thus, it is also more likely for the hotel to upgrade customers to 
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type-2 rooms (high price). The model, therefore, does not suggest any increase in Q2* when 
Q1* is already high. 

 
Figure 2: The optimal number of the overbooking for each type-1 and type-2 rooms at   
        different values of r1 (when r2=1500, C1=1000, C2=2000) 
 
      Figure 3 shows the optimal number of the overbooking for type-1 and type-2 rooms at 
different values of the average loss of revenue per each type-2 room unsold each night that are 
caused by no show (r2). We can notice that as the average loss of revenue per each type-2 
room (high price) unsold increases, it is more beneficial to increase the number of 
overbooking for type-2 rooms (Q2*). Nevertheless, as r2 increases, the model will suggest the 
hotel manager to reduce the number of overbooking for type-1 rooms (Q1*). An underlining 
reason is that when Q2* is suggested to be increased, it is less likely to have type-2 rooms 
available. It is also less likely to be able to upgrade customers who book for a type-1 room to 
type-2 room when there are not enough type-1 rooms. For this reason, it is safer to reduce the 
number of overbooking for type-1 rooms in this case. 

 
Figure 3: The optimal number of the overbooking for each type-1 and type-2 rooms at   
        different values of r2 (when r1=500, C1=1000, C2=2000) 
 
    Next, we consider the effects of the average outsourcing cost incurred for each type-1 
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room over-sold and the hotel sends customers to other hotels nearby (C1). Figure 4 presents 
the optimal number of the overbooking for each type of rooms at different values of C1 .It can 
be observed that as the outsourcing cost for each type-1 room increases, it is more beneficial 
to reduce the number of overbooking for type-1 room since it is more costly for insufficient 
room situation. However, the increase in C1 does not have any impacts on the optimal number 
of overbooking for type-2 room (with high price). It is because when the number of 
overbooking of low price (type-1) room decreases, it is less likely that the hotel will lack of 
type-1 rooms, so there are no needs to upgrade customers to type-2 rooms as well. The 
optimal number of overbooking for type-2 rooms is, therefore, not affected by the change of 
C1. 

 
Figure 4: The optimal number of the overbooking for each type-1 and type-2 rooms at   
        different values of C1 (when r1=500, r2=1500, C2=2000) 
 
       Figure 5 presents the optimal number of the overbooking for each type of rooms at 
different values of C2 , i.e., the average outsourcing cost incurred for each type-2 room 
(over-sold) when the hotel sends customers to other hotels nearby. We can see that when it is 
more costly to outsource type-2 from other hotels, it is more beneficial to reduce the number 
of overbooking for type-2 rooms (Q2*). Also, we observed the decrease in Q1* when C2 
increases. A reason is that when there are not enough type-1 rooms, the hotel will consider 
upgrading customers to high-price rooms (type-2). If it is costly to outsource type-2 rooms, 
the hotel should reduce the insufficiency risk by reducing the number of overbooking for 
type-1 rooms as well. 
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Figure 5: The optimal number of the overbooking for each type-1 and type-2 rooms at   
        different values of C2 (when r1=500, r2=1500, C1=1000) 
 
4. CONCLUSIONS  
       Overbooking decision is one of important and complicated decision makings, which 
are related directly to the yield of hotel revenue management. It is necessary for a hotel 
manager to observe cancellation pattern in the history to make a reliable decision. In this 
paper, we presented a systematic solution of the overbooking problem, by defining equations 
to identify the optimal number of overbooking for hotels having one and two room types. We 
showed that there exists a convexity structure of the objective cost function, consisting of the 
cost occurred from the leftover hotel rooms and the cost incurred from over-sales. 
Computational experiments are explored for insights on how model parameters affect the 
optimal number of the overbooking for each type of rooms. We found the number of the 
overbooking for each type-1 rooms with lower price should be reduced when the hotel 
manager observes the increase of (1) the average loss of revenue per each type-2 room unsold 
each night that are caused by no show, (2) the average outsourcing cost incurred for each 
type-1 room and (3) the average outsourcing cost incurred for each type-2 room when the 
hotel sends customers to other hotels nearby. The number of the overbooking for each type-2 
rooms with lower price should be increased when the hotel manager observes the increase of 
the average loss of revenue per each type-1 or type-2 room unsold each night that are caused 
by no show. However the number of the overbooking for each type-2 rooms with lower price 
should be decreased when the average outsourcing cost incurred for each type-2 room 
over-sold increases. 
      There are several possible extensions of this paper. First, our model assumes a possible 
upgrade of rooms for customers. One can extend the model by allowing downgrades of rooms 
with some costs to see how it affects the optimal overbooking solutions for each type of 
rooms. A second possible extension is an overbooking model for hotels having three types of 
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rooms. In this case there will be a greater number of possible situations to consider. It can be 
interesting to explore if there will be a convexity structure of the objective cost function in 
that case and how to identify the optimal solutions.   
 
 
APPENDIX 
Proof for Theorem 1. 

The reduced form of the objective function can be written as:  

0

( ) ( ) ( ) ( )
Q

Q

TC r x Q f x dx C Q x f x dx


     . 

By utilizing Leibniz Integral Rule, the objective function could be minimized at a 
relative ease. Taking the first order derivative on both sides of the objective function: 
 

0

[ ( ) ( ) ( ) ( ) ]
Q

Q

dTC d r x Q f x dx C Q x f x dx
dQ dQ



     ( ) (1 ( ))CF Q r F Q   .  

Now, set the first derivative to zero to find the closed form expression for the 
overbooking level:  

  0 ( ) (1 ( ))CF Q r F Q   . 
Solving this for *( )F Q  would give us: 

 
*( ) rF Q

C r



. 

Now let us check the convexity of the objective function by taking the second 
derivative of the objective function. 

 

2

2 ( ) ( ) 0d TC C r f Q
dQ

   . 

Since the second derivative of the function is nonnegative, our objective function is 
convex. 

 
Proof for Lemma 1. 

The convexity of the objective function can be proved by checking the second 
derivative of the objective function with respect to 1Q  and 2Q respectively. We have: 

 

 

          

2 1

2

1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 2
1

( ) ( ) (1 ( )) ( ) ( )
Q Q

Q

TC C F Q F Q r F Q C F Q Q x f x dx
Q


     

 
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2 2

2 1 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2( )[ ( ) ( ) ( )(1 ( )) ( ) ( ) ( ) ]
Q Q

r r F Q Q x f x dx F Q F Q f Q x Q f x dx
 

         . 

1

2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1
2 0

( ) (1 ( )) ( )( ( ) ( ) ( ))
QTC C F Q r F Q r r f x F Q Q x dx F Q

Q


       
   

1

1 1 1 2 2 1 1 1 1 1 2 2
0

( ( ) ( ) ( ) ( ))
Q

C f x F Q Q x dx F Q F Q    . 

Now, let us check the convexity of the objective function by taking the second 
derivative by 1Q  and 2Q respectively of the objective function. 

2 1

2

2

1 1 1 1 1 1 2 2 1 1 2 1 2 2 2 22
1

( ) ( ) ( ) ( ) ( )
Q Q

Q

TC r f Q C f Q F Q C f Q Q x f x dx
Q


    

   

      
2 2

2 1 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2( )( ( ) ( ) ( )(1 ( )) ( ) ( ) ( ) )
Q Q

r r f Q Q x f x dx f Q F Q f Q x Q f x dx
 

           

  
2

2
1

0TC
Q





 

And; 
2

2 1 1 2 1 2 2 2 2 1 1 2 2
1 2

( )( ( ) ( ) ( )(1 ( ))
Q

TC r r f Q Q x f x dx f Q F Q
Q Q


     

    

           
2 1

2

1 1 2 1 2 2 2 2( ) ( )
Q Q

Q

C f Q Q x f x dx


      

 
2

2
1 1 2

TC TC
Q Q Q

 


  
     

And;  
12

2 1 1 1 2 2 1 1 1 2 2 2 2 1 1 12
2 0

( ) ( ) ( ) ( )( ( ))
QTC r r f x f Q Q x dx f x r C C F Q

Q


      
   

        
1

1 1 1 2 2 1 1 1
0

( ) ( )
Q

C f x f Q Q x dx     

Since,  2 1 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1( ) ( ) ( ) ( ) ( )C C C F Q C F Q C C F Q C F Q C C F Q          
 

 So,  
2

2
2

0TC
Q





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And, 
1

2 1 1 1 2 2 1 1 1 1 1 2 2
2 1 0

( )( ( ) ( ) ( )(1 ( )))
QTC r r f x f Q Q x dx f Q F Q

Q Q


     
    

   
1

1 1 1 2 2 1 1 1
0

( ) ( )
Q

C f x f Q Q x dx    

 
2

2
2 2 1

TC TC
Q Q Q

 


  
 

 
Thus, we have:  
 

2 2

2 2
1 2 1 2 2 1

( )( ) ( )( ) 0TC TC TC TC
Q Q Q Q Q Q

   
 

     
. 

Since the second derivative of the function is nonnegative (By Hessian Matrix), our 

objective function is, therefore, jointly convex with respect to 1Q  and 2Q . 

Proof for Theorem 2. 
The the reduced form of the objective function can be written as:  

2 1

2 2 2 2 2 2 2 2 1 1 1 1 1 1( ) ( ) (1 ( )) ( ) ( )
Q Q

TC r x Q f x dx F Q r x Q f x dx
 

       

     
1

2 2 1 1

2 1 2 2 1 1 1 1 2 2 1 2( )( ) ( ) ( )
Q

Q Q Q x

r r x Q Q x f x f x dx dx


 

       

     
1 2 1 2 2

2

1 1 1 2 2 1 1 2 2 1 2
0

( ) ( ) ( )
Q Q Q Q x

Q

C Q x x Q f x f x dx dx
  

      

     

2

1

2 2 2 2 2 2 2 2 1 1 1 1 1 1
0

( ) ( ) ( ) ( ) ( )
Q

Q

C Q x f x dx F Q r x Q f x dx


      

     
1

2 2 1 1 1 1 1 1
0

( ) ( ) ( )
Q

F Q C Q x f x dx  . 

Applying Leibniz Integral Rule, the objective function could be minimized at a 
relative ease. Taking the first order derivative by 1Q  and 2Q respectively on both sides of the 
objective function, we have: 
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2 2

2 1 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2( )[ ( ) ( ) ( )(1 ( )) ( ) ( ) ( ) ]
Q Q

r r F Q Q x f x dx F Q F Q f Q x Q f x dx
 

         . 

1

2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1
2 0

( ) (1 ( )) ( )( ( ) ( ) ( ))
QTC C F Q r F Q r r f x F Q Q x dx F Q

Q


       
   

      
1

1 1 1 2 2 1 1 1 1 1 2 2
0

( ( ) ( ) ( ) ( ))
Q

C f x F Q Q x dx F Q F Q    . 

Now, set the first derivative to zero for two-equations to find the closed form 

expression for the overbooking level. Solving this for *
1( )F Q and *

2( )F Q  would give us: 

   
2 1

2

1 1 1 2 2 1 1 1 1 1 2 1 2 2 2 20 ( ) ( ) (1 ( )) ( ) ( )
Q Q

Q

C F Q F Q r F Q C F Q Q x f x dx


       

     
2 2

2 1 1 2 1 2 2 2 2 1 1 2 2 1 1 2 2 2 2 2( )( ( ) ( ) ( )(1 ( )) ( ) ( ) ( ) )
Q Q

r r F Q Q x f x dx F Q F Q f Q x Q f x dx
 

         . 

And; 
1

2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1
0

0 ( ) (1 ( )) ( )( ( ) ( ) ( ))
Q

C F Q r F Q r r f x F Q Q x dx F Q         

    
1

1 1 1 2 2 1 1 1 1 1 2 2
0

( ( ) ( ) ( ) ( ))
Q

C f x F Q Q x dx F Q F Q    . 
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