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Abstract 

The goal of production scheduling is to achieve a profitable balance among on-time delivery, 
short customer lead time, and maximum utilization of resources. However, current practices in 
precast production scheduling are fairly basic, depending heavily on experience, thereby 
resulting in inefficient resource utilization and late delivery. Certain computational techniques 
have been proven effective in scheduling. To enhance precast production scheduling, this 
research develops a Multi-Objective Precast Production Scheduling Model (MOPPSM). In the 
model, production resources and buffer size between stations are considered. A 
multi-objective genetic algorithm is then developed to search for optimum solutions with 
minimum makespan and tardiness penalties. The performance of the proposed model is 
validated by using five case studies. The experimental results show that the MOPPSM can 
successfully search for optimum precast production schedules. Furthermore, considering 
buffer sizes between stations is crucial for acquiring reasonable and feasible precast 
production schedules.  
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1. INTRODUCTION 
Precast construction is a method to build up constructions by prefabricated concrete 

elements (Demiralp et al. 2012). Precast fabricators deliver elements to construction site 

according to its erection schedule. Building up constructions using precast elements can 

reduce uncertainty than those casted in the construction site. In addition, it fits in with the 

needs of industrial process. As a result, precast fabrication in the construction industry can be 

categorized as manufacturing (Hossain and Ozyildirim 2013). Production scheduling is one 

of the most important tasks in the manufacturing. Different production schedule can induce 

different throughput. Industrial engineers therefore endeavor to finish products with a 

minimum makespan (Tharmmaphornphilas and Sareinpithak 2013). To enhance 

competitiveness, production schedulers face the challenge to satisfy multiple objectives since 

one objective may conflict with the others.  

The current practice of making precast production scheduling depends on scheduler’s 

experience. However, manually arranging production schedules frequently results late 
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delivery and wastes production resources (Dawood 1993, Chan and Hu 2002). Recently, 

researchers have started on using computational techniques to deal with scheduling issues. 

Chan and Hu (2002) developed a production model based on flowshop production. A Genetic 

Algorithm (GA) was used to solve the model. In their research, production activities were 

categorized into interruptible and uninterrupted groups. Benjaoran et al. (2005) proposed a 

flowshop sequencing model with a multi-objective GA. Multiple objectives in their study 

include minimum machine idle time, minimum late delivery penalty, and minimum makespan. 

Previous studies have proven that precast production is a flowshop production. In addition, 

production resources have a crucial impact on throughput.  

 

2. PRECAST PRODUCTION PROCESS 
Precast production is a flowshop production that can be divided into 6 steps, namely 

mold assembly, placement of reinforcement and all embedded parts, concrete casting, curing, 

mold stripping, and product finishing. The process is depicted in Figure 1. Mold assembly is 

to provide mold with a specific dimension for element. In general, fabricators use steel mold 

for a durable purpose. Precast concrete primarily contains two kinds of materials i.e. concrete 

and steel bars. Reinforcement and embedded parts are placed in their positions after the mold 

is complete. Embedded parts are used to connect and fix with other elements or with structure 

when precast elements are assembled. Concrete is cast when everything inside the element is 

in the right place. To enhance the chemistry solidifying concrete, curing concrete with steam 

is implemented. Otherwise, concrete takes weeks to reach its legal strength. Moving, erecting, 

or assembling elements before legal strength may damage elements. Molds can be striped 

after the concrete becomes solid. Due to the cost of developing steel molds, fabricators reuse 

them once they are stripped. The final step of production is product finishing. Minor defects 

such as scratch, peel-offs, uneven surfaces, etc. are treated in this step. 

Traditional flowshop sequencing problem regarded production as a continuous flow. 

However, precast production owns activities that can be done after working hours. Typical 

equation shown in Equation (1) that used to calculate completion time cannot meet the needs 

in the precast industry.  

 

   1 1, ax ( , ), ( , ) +j k j k j k jkC J M M C J M C J M P              (1) 

 

Notations used in Equation (1) are explained as follows: 

 ,j kC J M : Completion time for jth element in k machine. 

 jkP : Operation time for jth element in k machine,  0jkP  . 

 

Equation (1) assumes an infinite buffer size between stations. Due to the large size of 
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precast elements, Equation (1) is reformulated as Equation (2). 

 

   1 1, 1, ax ( , ) , ( , ) +j k j k j k j k jkC J M M C J M WT C J M P                 (2) 

 

where 1,j kWT   is the time for (j-1)th element in k machine waiting to be sent to buffer.  

Mold assembly

Placement of reinforcement
and all embedded parts

Concrete casting

Concrete curing

Mold stripping

Product finishing 
 

Figure 1: Precast production process. 

 

The Gantt chart of precast production is illustrated in Figure. 2. In the production, 

interruptible activities including mold assembly, placement of parts, mold stripping, and 

finishing can be done by the next day. Curing is categorized as uninterruptible activity that 

must be doing continuously until completion. Curing is a special task differing from other 

manufacturing. It is a time-consuming task and is frequently completed by machines without 

workers. As a result, it can be arranged in any time, even after the hours of working day. The 

other special requirement for curing is that it must be done right after casting i.e. no wait.  

Molds are necessary for precast fabrication. Number of molds is a crucial constrain for 

production scheduler. Due to the high cost of steel mold, fabricators only develop a few molds. 

As a result, makespan and throughput are harnessed by number of molds. For example, due to 

a limited number of mold A, element 3 with mold A cannot be started fabrication until 

element 1 releases mold A. The example demonstrates a situation that fabrication waits for 

mold, which frequently happens in practice. In the process of scheduling, sequence of molds 

is arranged according to the number of molds and types of molds. 
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Waiting for mold A

Element 1 (mold A)

Element 2 (mold B)

Element 3 (mold A)

Start Finish

Mold assembly Placement of parts Cast 

Curing Mold stripping finishing 

 

Figure 2: Gantt Chart of precast production. 

 

3. MULTI-OBJECTIVE GENETIC ALGORITHM 
The study adopts the Multi-Objective Genetic Local Search Algorithm (MOGLS) 

proposed by Ishibuchi and Murata (1998) to search for optimum production schedules. The 

evolutionary process of MOGLS is represented in Figure 3. Each step is discussed in the 

following sections. 

 

Step 1: Encoding 
Factors effect precast makespan include production resources and production sequence. 

Some production resources such as number of cranes and factory size cannot be changed by s

chedulers. Others such as buffer size between stations, mold number, and working hours can b

e determined by them. The study encodes production schedule by job sequence. Buffer sizes a

nd mold amount are treated as production constraints while scheduling.  

 

Step 2: Initializing Population 
The variation of initial solution with higher fitness value can improve searching 

efficiency. To provide an equal chance for every state space, a set of initial solutions are 

randomly generated. Those chromosomes offer a base for further evolutionary process. 
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Figure 3: Evolutionary process of MOGLS. 

 

Step 3: Calculating Objective Function 
In this step, chromosomes are decoded corresponding with precast production model. 

Two objectives are considered in the study: minimum makespan and minimum cost of penalty. 

The objective function is displayed in Equation (3) 

 

     1 1 2 2( )f x f x f x                         (3) 

 

where 1 2,     are positive weights and 1 2 1   . )(1 xf  is a makespan function and 

)(2 xf  is a penalty function. 
 

Proceedings of the 4th International Conference on Engineering, Project, and Production Management (EPPM 2013) 

788



 

 

Step 4: Updating Pareto Solution 
To make sure that derived solutions conform to the definition of Pareto solution, every 

generation has to update Pareto solution pool. The way to update the pool is to put the 

chromosomes that conform to the definition of Pareto solution in the Pareto solution pool.  

 

Step 5: Calculating Fitness Function 
To evaluate the fitness of each chromosome, objective value is converted to fitness value. 

In multi-objective programming, since distribution of each objective value is deferent, each 

objective value is normalized in advance. Then, a weighted-sum method can be applied. 

Cochran et al. (2003) proposed that sub-objectives are normalized by its fittest value. 

Equation (4) is thus used to convert fitness value.  

 

1 2
1 2* *

1 2

( ) ( )
( ) ( ) ( )  

( ) ( )

f x f x
f x

f x f x
                         (4) 

 

where * *
1 2,f f  represent the minimum makespan and minimum cost of penalty in the 

initial solution individually. 

 

Step 6: Selecting 
Selection operator is used to select chromosome according to its fitness. Higher fitness 

value has higher chance for survival. The purpose of the selection operator is to choose fitter 

chromosomes for evolving better generations. The study adopts roulette-wheel method for 
selection (Goldberg 1989). For population size popN  and elitism number eliteN , every 

generation selects  pop eliteN N  chromosomes.  
 

Step 7: Crossover 
GA extends searching space by crossover operator. The operator produces next 

generation by exchanging partial information of parents. The resulting generation represents a 

new set of solution. This study uses two-point crossover that randomly determine two points. 

Genes between the two points remain. The other parts are exchanged. 

 

Step 8: Mutation 
The mutation operator produces spontaneous random changes in various chromosomes. 

It protects against premature loss of important notations. The study uses shift mutation that 

randomly selects two points. The rear point inserts in advance of the prior point, then the 

whole gene shift back forward.  
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Step 9: Elitism 
Elitism has been proven successful in GA (Goldberg 1989). It survives a certain amount 

of Pareto solution to the next generation. So every generation contains elite solutions for 

better evolvement. Applying the strategy, fitness increases generation by generation.  

 

Step 10: Replacement 
Replacement is a process that produced chromosomes eliminate parent chromosomes. In 

the process, previous population is renewed by generated offspring. Therefore, next 

generation can continuously involve new solutions for evolvement.  

 

Step 11: Terminate Conditions 
Terminate conditions provide criterion for stopping evolutionary process. In general, 

evolutionary process is terminated by iterations and/or required fitness. This research 

terminates the evolutionary process by iterations assigned by users.  

 

4. EXPERIMENT 
The study experiments the efficiency of applying GA in precast production scheduling. 

Single objective GA, multi-objective GA, and multi-objective GA with a finite buffer size are 

experimented. 

 

4.1 Single Objective GA 
The study firstly experiments the efficiency of applying single objective GA in precast 

production scheduling. Production data shown in Table 1 are acquired from Chan and Hu (200

2). 

MOGLS can be applied to solve single objective problem. GA parameters for the 

problem are explained as follows: 

 Population size: 10 

 Termination condition: 1000 iterations 

 Crossover rate: 0.9 

 Mutation rate: 0.005 

 Elite number: 1 

 Local search: disable 

Since it is a small problem, local search is disabled. Experiment results are shown in 

Table 2. GA1 in the table denotes MOGLS with single objective “makespan” whereas GA2 

represents MOGLS with single objective “cost of penalty.” Observing the table, the schedule 

for single objective makespan, i.e. 4-5-2-6-1-3, is found by the algorithm. Schedule (i.e. 

4-2-3-1-6-5) with minimum cost of penalty 24.6 can be found by the algorithm too. The 

experiment validated that GA is promising to optimize precast production schedules. 
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Table 1: Production data for single objective GA. 

 

Element Production time Due day 

(h) 

Penalty 

Mold 

assemble 

Parts 

placement 

Concrete 

casting 

Mold 

stripping

Product 

finishing
Inventory 

Late 

delivery

1 1 0.8 1.2 1.5 0.5 28 2 10 

2 1.7 2 2 1.5 2.5 28 2 10 

3 0.4 0.5 0.6 0.5 0 28 1 10 

4 0.3 0.4 0.5 0.4 1 28 1 10 

5 1.5 1.8 1.2 1.5 1.5 52 2 10 

6 1.5 1.6 1.5 1.8 0.8 52 2 10 
 

Table 2: Experiment results for single objective problem. 
 

Solver Production sequence Makespan (h) Cost of penalty 

GA1 4-5-2-6-1-3 48.5 310.4 

GA2 4-2-3-1-6-5 51.0 24.6 

 

4.2 Multi-Objective GA 
The effectiveness of single objective GA in precast production scheduling has been 

proven in the previous section. This section discusses the promising of using MOGLS with 

multi-objective in precast production scheduling. 

Production data experimented in this section are acquired from Benjaoran et al. (2005) 

(see Table 3). In this case, prefabricator has two A molds, two B molds, and one C mold. The 

experiment includes ten elements, which provides 10! combinations. To compare experiment 

results, 26 Pareto solutions have been discovered through the principle of exhaustion. Ten of 

26 Pareto solutions are demonstrated in Table 4.  

GA parameters implemented in the experiment are summarized below: 

 Population size: 20 

 Termination condition: 2000 iterations 

 Crossover rate: 0.9 

 Mutation rate: 0.005 

 Elite number: 4 

 Local search: 2 times 
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Table 3: Production data for multi-objective GA. 

 

Element Production time Mold

type 

Due 

day 

(h) 

Penalty 

Mold 

assemble 

Parts 

placement 

Concrete 

casting 

Mold 

stripping

Product 

finishing
Inventory 

Late 

delivery

1 2 1.6 2.4 2.5 1 A 112 2 10 

2 3.4 4 4.0 2.4 5 B 112 2 10 

3 0.8 1 1.2 0.8 0 A 112 1 10 

4 0.6 0.8 1.0 0.6 2 A 112 1 10 

5 3 3.6 2.4 2.4 3 C 208 2 10 

6 3 3.2 3.0 3 1.6 A 128 2 10 

7 1.3 0.9 2.4 1.9 1.8 C 144 2 10 

8 1.7 1.4 1.1 0.9 0.7 B 144 2 20 

9 2.2 1.8 1.2 2.3 0.7 A 144 1 20 

10 1.6 3.2 2.3 2.1 2.7 C 240 1 20 

 

Table 4: Ten example of Pareto solutions. 

 

No. Production sequence Makespan (h) Cost of penalty 

1 5-6-10-4-2-9-7-1-8-3 100.2 1024.3 

2 5-4-2-10-1-6-8-7-9-3 99.4 1165.2 

3 5-4-2-10-9-6-8-7-1-3 99.6 1142.3 

4 5-4-3-2-10-6-1-8-7-9 99.3 1181.6 

5 8-2-4-10-3-1-6-9-7-5 173.4 594.2 

6 8-2-4-1-3-9-6-7-5-10 220.8 458 

7 8-2-4-3-1-6-9-7-5-10 196.8 503.4 

8 9-10-3-2-6-5-4-8-1-7 102.2 1005.5 

9 9-10-4-6-5-1-2-3-7-8 121.9 858.1 

10 9-10-4-3-2-5-1-6-8-7 103.6 977.7 

 

Since GA is a stochastic search, every execution produces different result. To verify the 

performance of the method, experiment result displayed in Table 5 is an average for 20 runs. 

Observing the accuracy, MOGLS is good enough for arranging precast production schedules 

comparing to currently manual practice.  
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Table 5: Experiment results for multi-objective problem. 

 

Solver 
Derived number of Pareto 

solution 
Correct number of Pareto solution Accuracy 

MOGLS 21.34 17.62 82.56% 

 

4.3 Multi-Objective GA with A Finite Buffer Size 
Unlike regular manufacturing, precast elements occupy large spaces. It is not reasonable 

if buffer sizes between stations are ignored. Otherwise, production schedules are not realistic 

since fabricator provides precast fabrication with a finite space. The objective of this section 

is to validate that buffer sizes between stations is one of crucial constraints for schedulers.  

Production data shown in Table 3 are used for experiment. GA parameters are the same 

with previous section. Maximum buffer sizes between stations are set as five. Experiment 

results are shown in Table 6. 

 

Table 6: Experiment results for multi-objective problem with a finite buffer. 

 

Buffer size Makespan Penalty Required buffer size 

5 126.9 701.6 2 

4 126.9 701.6 2 

3 127.1 706.2 2 

2 132.3 717.9 2 

1 134.7 729.1 1 

Observing the results, maximum required buffer size for the production system is two. 

Therefore, buffer size has no impact on makespan and cost of penalty when buffer size is 

more than two. By the contrast, if buffer size is smaller than the required buffer size, both 

makespan and cost of penalty increases. 

 

5. CONCLUSIONS 
The study describes precast production process with a mathematical model. A multi-obje

ctive GA developed based on MOGLS is proposed to solve the model. Multi-objective consid

ered in the study is to minimize makespan as well as cost of penalty. Three experiments are us

ed to demonstrate the performance of GA in single objective, multi-objective, and multi-objec

tive with a finite buffer size at precast production scheduling. Implementation results show th

at multi-objective GA can offer production schedulers with a set of subjective Pareto solutions

. The information provided by GA can assist schedulers to make proper production schedules. 

Numbers of molds is one of important factors directly impacting production schedules. 

Therefore, how to determine optimum numbers of molds with production scheduling should 
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be studied in the future. 
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