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Abstract 
This article proposes a simulation model utilizing Markov Decision Process (MDP) for 

quality assessment of Software Development Process (SDP). The MDP is based on a 

qualification model, which contains project architecture, team assignment strategy, Software 

Quality Assurance (SQA) system construction strategy, and qualification actions selected in 

the SQA system. The proposed approach has been demonstrated using a sample software 

project taken from the literature. The results prove the proposed approach to be capable of 

assessing alternative strategies at earlier stages of SDP. 
 

Keywords: Software Quality, Software Quality Assurance, Modeling, Markov Decision 

Process, Simulation 

 

 
1. INTRODUCTION 

The properties of software products show important differences from other industrial 

products (Galin 2004) and make the assessment of software product quality more difficult. 

Most of the proposed approaches generally benchmark the performance of software 

components and do not consider dynamics of SDP, in which case, analysts’ intuition and 

experience plays important role and have significant impact on the desired judgment on the 

quality.  This is unfortunate because SDP dynamics are important (Warren et al. 1992) and 

modelling these dynamics should be a routine part. In order to consider the system dynamics 

effectively, SDP must include techniques that facilitate the effectiveness of the verification of 

the target process. Traditional stochastic simulation is one of such powerful techniques 

available to those responsible for the development of software systems. The stochastic 

simulation models not only models the dynamics of architectural design but also increases the 

accuracy of early estimates of quality. Consequently, it saves effort at an earlier stage of 
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development, rather than waiting until after the system is implemented (Hall et al., 2002). 

However, stochastic simulation has not been a common practice for SDP and is still in its 

infancy (Pfahl, 2002).  

This article proposes a simulation model based on the stochastic nature of SDP to 

represent the dynamics of the development process such as project architecture, SQA 

construction strategy, qualification actions, and team assignment strategy.  The proposed 

approach has the advantage of testing different theoretical performance targets of different 

phases at earlier stages and can be tailored to the special features of the SQA system of 

software projects because it is parametrized. It also increases the accuracy of early estimates 

of the quality. The proposed approach has been demonstrated using a case study taken from 

the literature (Padberg 2002). 

 

2. QUALIFICATION MODEL 

The approach here uses a qualification model containing important dynamics of a 

software development project, such as task assignments, the skill level of project staff, the 

SQA components, and rework caused by detected errors. As mentioned earlier, the 

qualification model is stochastic and takes into account the uncertainty of the occurrence of 

events during the sub-phases of the software project development. In order to include the 

dynamics in the qualification model, the project architecture, base probabilities, qualification 

actions, team assignment strategy, SQA construction strategy, and their corresponding 

assumptions need to be explained (Figure 1). 

 

Qualification Model

Project Architecture

SQA System Strategy

Team Assignment Strategy

Qualification Actions

Base Probabilities

In
pu

ts
 o

f Q
ua

lif
ic

at
io

n 
M

od
el

MDP Aproach

MDP Representation of 

Qualification Model

1. Time and Phases

2. States

3. Actions and Strategies

4. Transition Probabilities

4. Transition Rewards

5. Transition Costs

S
of

tw
ar

e 

P
ro

je
ct

R
es

ul
ts

1. Weighted Quality Value

2. Total Time

3. Total Cost

4. (Anticipated) Quality Degree

5. (Anticipated) Total Quality Degree

 

Figure 1: System modelling 

2.1 Project Architecture 

The architecture of a software development project has a significant impact on the 

complexity and quality and is taken as one of the factors of the qualification model. The 
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proposed approach assumes that project architecture is determined by the components of the 

project, components to be developed simultaneously and the development order of the 

components. Additionally, the project components are assumed to be classified according to 

their size and complexity level (Table 1).  

 

Table 1: Classes of software project components and teams 

 

Class 

No 

Component Team 

Estimated 

Size 

Estimated 

Complexity 

Level 

Productvity 

Level 

Error 

Making 

Level 

Cost 

Level 

Unit 

staffing 

Cost 

1 Small Low Low Low 7 0.850 

2 Small Average Low Average 8 0.825 

3 Small High Low High 9 0.800 

4 Average Low Average Low 3 0.950 

5 Average Average Average Average 4 0.925 

6 Average High Average High 6 0.875 

7 Large Low High Low 1 1.000 

8 Large Average High Average 2 0.975 

9 Large High High High 5 0.900 

 

2.2 Base Probabilities 

The SDP presents a stochastic environment since the events occur with certain 

probabilities during SDP lifecycle. Therefore, qualification model includes prediction of these 

probabilities, which are called base probabilities. The base probabilities reflect the 

characteristics of the project components, the SQA components and the teams. In other words, 

they show how the project teams make progress in working/reworking on the project 

components, and determine how the SQA components behave on the project components as 

follows:  

1.  COMP _ r

TEAM _ kP A (t)
 and  COMP_r

TEAM_kP B (t)
 specify the probability that the team k will complete 

its work on the project component r without errors  and with at least one error 

after having worked on it for t time units respectively. 

2.  COMP_r

SQA_COMP_kP C (t)
,   COMP_r

SQA_COMP_kP D (t)
 and  COMP_r

SQA_COMP_kP E (t)  specify the probability that the SQA 

component k will detect all the errors, least one error - but not all – and  no errors 

on the project component r after having worked on it for t time units respectively. 

Proceedings of the 4th International Conference on Engineering, Project, and Production Management (EPPM 2013) 

1097



 

 

3.  COMP_r

TEAM_kP F (t) ,  COMP_r

TEAM_kP G (t)  and   COMP_r

TEAM_kP H (t)  specify the probability that the team k will 

remove all the errors, at least one error - but not all – and  no errors from the 

project component r after having worked on it for t time units respectively. 

The base probabilities, in the model, represent the probability of transition from one state 

to proceeding one and depend on the size and complexity level of the components, and 

productivity and error-making level of the teams. The project components are assumed to be 

classified into nine classes with respect to their estimated size and complexity level as given 

in Table 1. The skill and cost level for a team are assumed to be determined by the 

corresponding productivity and error making levels (Table 1). The skill level (productivity 

level - error making level) is used to calculate base probabilities although team cost level is 

for the cost.  

 

2.3 Qualification Actions 

Qualification actions take place only at the end of phases (or sub-phases) in which the 

development team completes its work on the project component. General reviews, formal 

design reviews, tests are examples of qualification actions. The SQA component applied 

during the qualification action is assumed to affect the result of the action. This means the 

characteristics of the qualification actions can be modeled using the base probabilities using 

the metrics database of the organization.  

 

2.4 Team Assignment Strategy 

Team assignment strategy has important impact on the quality level of SDP and, 

therefore, is included as one of the components of the qualification model.  The proposed 

qualification model assumes that in a software project there may be more than one team with 

different skill levels and a project may consist of more than one component.  The skill level 

can be represented by the productivity and error making levels given in Table 1 and predicted 

using the base probabilities.  

 

2.5 SQA System Construction Strategy 

Construction strategy is the way of choosing components to implement an SQA system 

in an organization. The SQA system should be tailored to reflect the project’s internal 

dynamics. It should take important characteristics and quality factors of the project, quality 

policies and objectives of the organization and department, and staff skill level of the project 

department into account (Pressman, 2000; Galin, 2004). 

 

3. MDP MODEL 
The MDP model is based on time and phases, project states, actions and strategies, 
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transition probabilities, and reward and cost functions for the design phase of SDP life cycle. 

The MDP uses a set of states S, a set of actions A and a reward function. A subset of actions is 

available for each state and there is probability distribution for each state. In consideration of 

the proposed model, all MDP’s are finite, that is both sets S and A are finite.  

 

3.1 Time and Phases 

The time is taken into account in the model in terms of base probabilities and the term 

phase has been used to indicate the progress of the project with respect to the time spent.  

In the workload model, a software project is assumed to advance through a sequence of 

phases, which may consist of some sub-phases. By definition, a phase ends when a team 

finishes its work, or rework, on a project product, or when the application of an SQA 

component on a project product is finalized. This allows us to use a discrete-time finite-

horizon MDP as a mathematical model.  In this study, the software development process has 

been adopted as a sequential decision problem, in which the set of actions, rewards, cost, and 

transition probabilities depend only on the current state of the system and the current action 

being performed.  

 

3.2 States 

In the MDP, the system moves from one state to another randomly. The state of a system 

is a parameter, or a set of parameters, that describes the system. The state § of software 

project changes at the end of each phase and consists of four components: a status vector, an 

assignment vector, a progress vector, and  a countdown variable. 

The status vector has one entity for each component of the software project and an entity 

of the status vector is defined as the status of a component. During a software development 

phase, the status of a project component may have one of the following values: Not yet 

developed (NYD); Under development (UD); Developed with no error (DWNE); Developed 

with error(s) (DWE); Under qualification action (UQA); Qualified by detecting no error 

(QBDNE); Qualified by detecting some errors (QBDSE); Qualified by detecting all errors 

(QBDAE); Under rework (UR); Reworked by removing no error detected (RBRNED); 

Reworked by removing some errors detected (RBRSED); Reworked by removing all errors 

detected (RBRAED); Completed (COMP) and Cancelled (CANCEL). 

The assignment vector defines which component is assigned to which team and has one 

entity for each component of the software project,. An entity of the assignment vector is 

defined as the team ID (team 1, 2, etc.) which has worked most recently, or is still working, on 

the component. An entity is equal to 0 if none of the project teams has worked on the 

corresponding component yet.  

The progress vector has one entity for each component of the software project too. An 
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entity of the progress vector is defined as the time that spent while working on the component 

in a phase. In the current phase, if the work is completed on the r-th component, the entity of 

the assignment vector will show ∞. Similarly, if a team is assigned to the r-th component 

while no work has started on it yet i.e. 0). 

The countdown variable shows the time left for the completion of the project which is 

denoted by T.  

The state of a project component r can be defined at the end of a phase. The initial state 

of a project is defined by status vector =NDY, assignment vector=0, progress vector=0, 

countdown variable=T, where T>0. The final state means that all the project components are 

completed, and that no new team will be assigned to any component (i.e. for each component 

r, progress vector= ∞, status vector = COMP and assignment vector=team_ID). The project 

development also finishes when the project’s deadline is exceeded, i.e., countdown variable 

<= 0. However, if the project has not been completed before its deadline, then the quality 

degree of the project is assumed to be zero, or any negative value, to indicate the effect of the 

previously-determined project development time. 

 

3.3 Actions and Strategies 

An action defines what will be done with regard to the project component at a given 

development phase. Actions may depend on the current state of the project as well as the 

current phase of the development process. The possible actions of the design phase of the are 

as follows.   

1. “Component designing” sub-phase: Assigning a team to a component (d1); Starting to 

design (d2); Completing the design activities (d3) and Canceling design activities (d4). 

2. “Design reviewing” sub-phase: Forming and assigning a review team (rd1); Starting to 

review (rd2); Completing review (rd3) and Canceling review (rd4). 

3. “Design reworking” sub-phase: Assigning the team to rework (rw1); Starting to rework 

(rw2); Completing the rework (rw3) and Canceling the rework (rw4). 

For the design phase, the action set A can be expressed as: 

},,,,,,,,,,,{ 432143214321 rwrwrwrwrdrdrdrdddddA     (1) 

To form an assignment strategy, the components of the project are listed according to 

their priority level. Assignment strategies should keep all the project teams engaged during 

the project development. After the work on a component is completed, it is removed from the 

list and the next component on the list moves into the development process. If only one team 

is available, it is assigned to this component. If there is more than one team available, the 

team with the lowest ID is assigned to the component to be processed. The skill level of 

project teams and the classification of project components should be taken into account during 

the assignment of a team to a component.  
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3.4 Transition Probabilities  

The transition probability represents the probability of a system to move from one state 

to another under a given action. For a given current state i§ S  and action ii §A 
, the next 

state i+1§  is not determined alone due to the stochastic nature of the selected dynamics, yet it 

occurs with the probability  i i i+1P § , ; § . Clearly, for a given state § S  and action §A
, we 

have   

 P(§, ; ) 1


     where {  } are all possible next states for § S        (2) 

Since in an MDP, the transition probabilities depend only on the current state and the 

action performed rather than those in the past, the probability that the project will take a 

particular path equals: 

 
N 1

N i i i 1

i 0

P( ) P § , ;§






   .      (3) 

3.5 Quality in Terms of Reward and Cost  

For each project component, the reward and cost functions have to be taken into account. To 

this end, a reward function (IR) has been used to determine the immediate reward (positive or 

negative). In the proposed model for the design phase, a positive immediate reward for each 

of  the project components is 

 i i i+1IR § , ;§ = {   

5 for §i = NYD, αi= d1; §i+1 = UD 

90 for §i =UD , αi= d2; §i+1 = DWNE 

10  for §i = UD, αi= d2; §i+1 = DWE 

5  for §i =DWE , αi= rd1; §i+1 = UQA 

0  for §i =UQA , αi= rd2; §i+1 = QBDNE 

10 for §i =UQA , αi= rd2; §i+1 = QBDSE 

20 for §i =UQA , αi= rd2;§i+1 = QBDAE 

5 for §i = QBDSE, QBDAE, αi= rw1, §i+1 = UR 

0 for §i =UR , αi= rw2; §i+1 = RBRNED 

20 for §i =UR , αi= rw2; §i+1 = RBRSED 

40 for §i =UR , αi= rw2; §i+1 = RBRAED 

5 for §i = DWNE, αi= d3; §i = QBDNE, αi=rd3; §i = RBRNED, RBRSED, 

RBRAED, αi= rw3; §i+1 = COMP 
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-1000 for §i =UD, αi=d4; §i = DWE, UQA, αi=rd4; §i = QBDNE, QBDSE, UR, 

αi=rw4; §i+1 = CANCEL}          (4) 

For a given path  , the total immediate reward is: 

N-1

immediate i i i 1

i 0

V ( ) IR(§ , ; § )



          (5) 

We propose the use of the ‘Weighted Quality Value’ (WQV), as referred to in this paper, 

for each state action sequence  : 

 
N-1

i i i 1 i i i 1

i 0

WQV( ) IR § , ; § .P(§ , ; § ) 



         (6) 

The transition cost is calculated as follows: 

   i i i+1C § , ;§ cos t _of _ team *t  ,  where c c

i i+1t § §   and cost_of_team is taken from Table 1 

In our model, the quality of a path can be calculated by the quantity referred to in this 

paper as the ‘Quality Degree’ (QD): 

N 1

i i i+1

i 0

QD( ) WQV( ) / C(§ , ;§ )




          (7) 

However, Equation (7) does not lead to a meaningful comparison of team performance in 

a project since it shows the total quality degree only for a single path. To take into 

consideration all the possible paths for each team-component pair, we introduce the expected 

QD as: 

   expected

all _ paths _

QD QD .P


  
.       (8) 

4. SIMULATION MODEL 
To get an overall conclusion about all possible strategies in a project, the quality degree 

(QD) of each strategy must be calculated (Sutton and Barto, 1998). Therefore, when the 

number of system states is high, simulation has been successfully used to calculate the mean 

value (mean quality degree) of a given strategy (Padberg 2000; Bertsekas 1996). The Mean 

quality degree for a given strategycan be expressed as follows: 

   
Y

mean §,N §,N

j=1

1
QD ψ = QD ψ ;j

Y


          (9) 

where  mean §,NQD ψ
  is the mean value (mean quality degree) of j-th sample trajectory starting 

from state § and having N steps to go. Y shows the number of sample trajectories used in the 

simulation. In the simulation, the mean quality degree of a sample trajectory can be calculated 
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as follows (Padberg 2000; Bertsekas 1996): 

        mean §,N mean §,N mean §,N mean §,N

1
QD ψ : QD ψ QD ψ ; QD ψj

j
  

         (10) 

The mean quality degree   mean §,NQD ψ  is initialized with zero. Whenever passing each state 

on the simulation trajectory, the Eq. (10) is applied. 

 

5. APPLICATION 
To demonstrate the proposed model, a sample project has been selected from literature 

(Padberg 2002), and the model has been implemented by using ARENA® simulation tool 

according to the sample project.  

 

5.1 Simulation Results 

In the simulation model, the strategy followed during project development consists of 

two parts: The component development order and team assignment strategy. To analyze the 

results of the simulation, Average quality reward, average development cost, average 

development time, and average team utilization have been used. Outputs of each strategy have 

been measured and comparisons have been done by using Paired-t test of the Output Analyzer 

tool with either 95% or 99% confidence levels.  

 

5.2 Effects of Deadline on Project Quality 

The effects of the deadline on the quality of project have been analyzed by using two 

different scenarios. The execution time for each scenario is limited with a deadline. If a 

simulation run can not be accomplished before the deadline, the run will be aborted. For the 

1st scenario, deadline has been selected so as to guarantee to stop some of the simulation runs. 

But for the 2nd scenario, deadline has been selected long enough to ensure all runs can be 

completed before deadline. The results of the 1st and 2nd scenarios for the strategy ABCD-

1212 have been given in Table 3. 

 

Table 3: Output values if deadline is exceeded 

 

 deadline is exceeded deadline is not exceeded 

Output Ave. 

Half 

Width 

Min. 

Ave. 

Max. 

Ave. Ave. 

Half 

Width 

Min. 

Ave. 

Max. 

Ave. 

A- WQV 93.58 1.06 25.00 100.00 93.58 1.06 25.00 100.00 

B- WQV 82.91 2.17 0.00 100.00 92.41 1.13 25.00 100.00 

C- WQV 67.37 2.77 0.00 100.00 86.21 1.42 25.00 100.00 

D- WQV 43.39 2.91 0.00 100.00 76.46 1.64 25.00 100.00 
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A - Cost 111.47 0.94 83.33 160.00 111.47 0.94 83.33 160.00 

B - Cost 160.49 1.37 133.00 224.83 160.49 1.37 133.00 224.83 

C - Cost 215.63 2.22 176.67 290.00 215.63 2.22 176.67 290.00 

D - Cost 367.22 3.46 294.50 446.50 367.22 3.46 294.50 446.50 

Total Cost 854.81 4.49 719.83 1069.50 854.81 4.49 719.83 1069.50 

Total Dev. 

Time  168.68 < 1.18 137.00 206.04 168.68 < 1.18 137.00 206.04 

Total 

WQV 287.24 4.65 25.00 400.00 348.65 2.59 175.00 400.00 

 

Table 3 also shows the values when the deadline is not exceeded. Note that, the average 

WQV of components B, C and D is higher than that of deadline is exceeded, and the half 

width value is less to show the small variance between the replications. Cost and time values 

are the same in both cases. 

The deadline is exceeded part of Table 3 declares a software project having a quality 

degree (unit WQV value per unit cost) of 287.24/854.81 after following the strategy of 

ABCD-1212. Table 3 also shows a quality degree of 348.65/854.81 for the same project and 

the same strategy. It is obvious that the 2nd case has a higher quality degree when the 

deadline is not exceeded. 

 

5.3 The Best and Worst Strategies 

Table 5 lists the best and worst strategies for each output measure and declares the 

observed values.  

Table 5: The best and worst strategies 

 

Output 
Observed 

Value 

Component 

Development Order 

Team 

Assignment 

Strategy 

Highest Average WQV 349.97 
ABCD; ABDC; 

BACD; BADC 
1221 

Lowest Average WQV 346.43 ACBD; CABD 1122 

Highest Average 

Development Cost 
893.15 BCAD; CBAD 2212 

Lowest Average 

Development Cost 
771.31 DCAB; CDAB 1121 

Longest Average 

Development Time (in 

days) 

213.73 BCAD; CBAD 2212 

Shortest Average 

Development Time (in 

days) 

131.79 
ADBC; BDAC; 

DABC; DBAC 
1112 
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Best Average Team 

Utilization 
11.10% CDAB; DCAB 1112 

Worst Average Team 

Utilization 
69.33% BCAD; CBAD 2212 

 

The highest average WQV is 349.97 over 400. Note that, the maximum WQV for a 

project component is 100, and because the sample project has four components, total 

maximum WQV for it is 400. The highest WQV was satisfied by four development orders -

ABCD, ABDC, BACD, and BADC- with the same team assignment strategy, 1221. It should 

be noted that in the simulation model, all project teams must be kept busy during 

development. So, while Team 1 develops Component A, Team 2 develops B, or vice versa. 

So, there is no difference between the development order AB and BA. The same situation is 

valid for the development of components C and D. Thus, those four development orders are 

the same for the strategy 1221. So, all of them have the same WQV as it is seen in Table 5. 

The lowest average WQV is 346.43 over 400. This value is satisfied by two different 

development orders - ACBD and CABD - with the same team assignment strategy, 1122.  

Because, all project teams must be busy, the development order of AC and CA are the same.  

The strategies ABCD-1221 and ACBD-1122 have been analyzed by using Output 

Analyzer tool to understand that the highest average WQV differs statistically from the lowest 

one. The result shows that those two strategies are statistically different from each other at 

0.05 level (the 95% Confidence Interval), as the random input generator of the ARENA® uses 

different random input sets for each simulation run (Chapter 12 in (Kelton, Sadowski, and 

Sturrock 2007)). For further analysis, it can be seen that they are not different statistically at 

0.01 level (the 99% Confidence Interval) by usingthe Paired-t Test, because the fail and 

success rates are defined as the same for Team 1 and 2. So, the quality level of a component 

developed by Team 1 is almost the same with that of the component developed by Team 2. 

The differences between quality levels of the strategies in Table 5 are as a result of the random 

inputs used in the simulation model. As a conclusion, since the average WQVs of all 

strategies are very close to each other, the quality level should not be taken into consideration 

while choosing the best and worst strategies for the sample project. 

The highest average development cost is 893.15 units. The cost depends on not only the 

time but also the unit cost value of the teams who have spent the time. The highest cost value 

is satisfied by two development orders - BCAD and CBAD - the same for the team 

assignment strategy 2212. For both development orders, Team 2 develops Component B 

firstly (Team 1 develops only C) and then develops A and finally D. This means that two 

small components and the largest one are developed by Team 2. According to the probability 

distributions, Team 2 is slower than Team 1 and the former is cheaper than the latter. Keeping 

them in mind, it can be concluded that the strategies in which the slower team develops 3 
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components of the sample project may have the highest average development cost.  

The lowest average cost is 771.31 units for two different development orders - CDAB 

and DCAB - the same for the team assignment strategy 1121. For both development orders, 

Team 1 develops Component D firstly (Team 2 develops only C) and then develops A and 

finally B. This means that two small components and the largest one are developed by Team 

1. So, the strategies in which the faster team develops 3 components of the sample project 

may have the lowest average development cost. 

The strategy BCAD-2212 and CDAB-1121 has been analyzed by using the Output 

Analyzer, using the Paired-t Test. The result shows that those two strategies are statistically 

different from each other at 0.05 level. 

The longest average development time is 213.73 days. The development time depends on 

the probability distributions of the project teams. The longest development time value belongs 

to the development orders - BCAD and CBAD - the same for the team assignment strategy 

2212. The strategy 2212 means that two small components and the largest component are 

developed by Team 2. Thus, the strategies in which the slower team develops three 

components may have the longest average development time.  

The shortest average development time is 131.79 days. This value is satisfied by four 

different development orders - ADBC, BDAC, DABC, and DBAC - with the same team 

assignment strategy, 1112.  Two small components and a large one are developed by Team 1. 

So, the strategies in which the faster team develops 3 components may have the shortest 

average development time. 

The strategy BCAD-2212 and ADBC-1112 has been analyzed by using the Output 

Analyzer, using the Paired-t Test. The result shows that those two strategies are statistically 

different from each other at 0.05 level. 

 

6. CONCLUSİONS 
This work shows how simulation can be used to support project managers in finding a 

good strategy for achieving a high quality level for their projects. A simulation model based 

on the MDP model has been presented for only design phase for this purpose. The simulation 

model has been implemented in ARENA® simulation tool on a small hypothetical software 

project from (Padberg 2002) to analyze the performance of various strategies for software 

projects. Although, other methods using metrics and available standards can be used to assess 

the quality the simulation results show that proposed approach is capable of assessing 

alternative strategies at earlier stages of SDP. This constitute the most important advantage of 

the MDP method over other methods. 

 

Proceedings of the 4th International Conference on Engineering, Project, and Production Management (EPPM 2013) 

1106



 

 

REFERENCES 

Ambler, S. W. and Jeffries, R. (2001) Agile Modeling: Effective Practices for Extreme 

Programming and the Unified Process, 1st  Edition, John Wiley & Sons.  

Bertsekas, T. (1996) Dynamic Programming and Optimal Control I+II, Athena Scientific.  

Boehm, B. W. (1981) Software Engineering Economics, Prentice-Hall, NJ, USA. 

Galin, D. (2004) Software Quality Assurance – From theory to implementation, Pearson – 

Addison Wesley, England. 

Hall T. et. al. (2002) Implementing Software Process Improvement: An Empirical Study, 

Software Process Improvement and Practice, 2002, 7, 3-15. 

Haring, G. and Kotsis, G. (1995) Workload Modeling for Parallel Processing Systems. 

MASCOTS 1995, 8-12. 

Kelton, W. D., Sadowski, R. P., Sturrock, D. T. (2007) Simulation with Arena, 4th Edition, 

McGraw Hill International, ISBN-13:978-0-07-110685-6. 

Padberg, F. (2000) Towards Optimizing the Schedule of Software Projects with Respect to 

Development Time and Cost, International Software Process Simulation Modeling 

Workshop ProSim. 

Padberg, F. (2002) A Discrete Simulation Model for Assessing Software Project Scheduling 

Policies, Software Process Improvement and Practice 7: 127-139. 

Srivastava, A. K., Sharma, G. and Keeni, G. (2002) A Systematic Approach to Plan 

Inspection Process, The 7th International Symposium on Future Technology (ISFST), 

October 20-25, 2002 Xi’an, Wuhan, China. 

Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: An Introduction, MIT Press, 

Cambridge, MA. 

 

Proceedings of the 4th International Conference on Engineering, Project, and Production Management (EPPM 2013) 

1107

http://www.informatik.uni-trier.de/~ley/db/conf/mascots/mascots1995.html#HaringK95

	EPPM2013 Proceedings 1096
	EPPM2013 Proceedings 1097
	EPPM2013 Proceedings 1098
	EPPM2013 Proceedings 1099
	EPPM2013 Proceedings 1100
	EPPM2013 Proceedings 1101
	EPPM2013 Proceedings 1102
	EPPM2013 Proceedings 1103
	EPPM2013 Proceedings 1104
	EPPM2013 Proceedings 1105
	EPPM2013 Proceedings 1106
	EPPM2013 Proceedings 1107
	EPPM2013 Proceedings 1108



