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Abstract 

Estimates of the construction time and cost are of key importance in the early phases of the 

project – they serve as a basis for the decision whether to commence with planning or not, 

and are used as input for budgets and programmes. The project’s success depends on 

reliability of these estimates. It is thus crucial to answer the question: what do the project 

time and cost depend on? or easier to answer: correlated with? The answer can be based 

only on experience – personal as well as recorded in databases or mathematical models. 

Tools facilitating construction project planning on the basis of past experience are the 

object of research for many years. The paper discusses the time-cost relationship proposed 

by Bromilow in nineteen-sixties and adopted in many later multifactor models of 

construction duration. On the basis of a sample of 100 Polish public road projects, the 

statistical validity of the Bromilow’s model was confirmed. The model was compared with 

multifactor models based on statistical regression and regression trees. Applicability of the 

models was discussed with respect to their errors and confidence intervals. 
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Introduction  

The existence of a relationship between construction time and cost has been considered 

obvious: the time-cost-performance triangle appears in practically all project management 

handbooks (e.g. Kerzner, 1984). However, it would be interesting to find out if this 

relationship could be described quantitatively, and if so, if it might find any practical 

application. Cost is a generalized measure of any project’s scale and complexity. Assuming 

that a reliable estimate of the project cost is possible to be made at early stages of planning, 

the cost may be considered known at the moment when project duration is to be decided. 

This rather optimistic assumption was the foundation for numerous attempts aimed at 

establishing a time-cost model that could be used for predicting project duration on the 

basis of project cost. 

Statistical time-cost models 

Literature review 

Application of models using systematically recorded experience to planning and managing 

new project has been an object of interest of many researchers (Lai et al., 2008; Lee et al., 

2008; Kaplinski, 1997). Among the models considered, regression-based ones are reported 

                                                           
1
 Assistant Professor, Faculty of Civil Engineering and Architecture, Lublin University of Technology, 

20-618 Lublin, Nadbystrzycka 40, Poland, Tel.: +48 815384441, fax: +48 815384648; e-mail: 

a.czarnigowska@pollub.pl  
2
   Professor, Department of Geomechanics, Civil Engineering and Geotechnics, AGH University of 

Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland, Tel: +48 126174767, Fax: +48 

126172059, e-mail: sobotka@agh.edu.pl 



 2 

to provide a useful tool in cost planning (e.g. Chou and Tseng, 2011). Though project cost 

databases tend to be more popular than those of project schedules, there have been 

a number of attempts to construct models of project duration based on historical data. 

The first time-cost regression model of construction projects is attributed to Australian 

researchers who, having analyzed cost and duration of a sample of construction projects 

completed during late 1960ies, proposed the following model, later referred to as the 

Bromilow’s time-cost model (Kaka and Price, 1991):  

 
BCKL  , (1) 

or its equivalent: 

 CBKL lnlnln  , (2) 

where L is the number of working days from the contractor’s possession of the building 

site to the completion of works; C – actual value of works as paid by the client, expressed 

in A$ million; K and B – constants.  

Bromilow’s findings were checked by other researchers on the basis of new samples 

(Kaka and Price, 1991; Chan, 2001; Yousef and Baccarini, 2001; Ogunsemi and Jagboro, 

2006). The form of the time-cost function (1) was confirmed to match sample data better 

than other function types tried, though determination coefficients obtained by the authors 

were not high (for large samples of non-uniform projects below 0.75). Large yearly 

fluctuations of the constants B and K were reported, though without any particular trend 

(Skitmore and Ng, 2001) 

Statistical significance of the time-cost relationship gave rise to numerous attempts to 

create a multifactor regression model of construction duration that would incorporate 

project qualities other than cost and provide a better fit than the Bromilow’s model. Table 

1 compares selected models presented in the literature, where L stands for construction 

duration expressed in days, and bi represent constants.  

With few exceptions (Skitmore and Ng, 2003, Love et al., 2005, Stoy et al., 2007), cost 

was usually considered the most important independent variable present in multifactor 

models. Generally, there is no agreement on what factors should be the basis for estimating 

the duration. Despite the fact that the models presented in the literature were claimed to be 

statistically correct and significant, the authors often came to contradictory conclusions: 

some found that e.g. the client sector (public/private), building function or size strongly 

affected construction duration, others excluded them as insignificant. The initial selection 

of factors considered was also a matter of assumption, as the models were not always 

aimed at duration predictions – some were by-products of search for factors correlated with 

duration, some were used for measuring time performance. Thus, there were researchers 

who focused on management factors, whereas other preferred more “tangible” qualities, 

either known well ahead of commencement with works, or  possible to be determined only 

after the project was finished.  

The log-log relationship between time and cost in these multifactor models was widely 

argued to provide best fit, though some different functions were also proposed (Stoy et al., 

2007; BCIS, 2004a; Martin et al., 2006; BCIS 2009). The authors were rarely specific 

about the quality measures of their models. The prediction and confidence intervals for the 

estimates can be found only in Stoy et al. (2007), BCIS (2004a) and BCIS (2009). 

Naturally, the larger and more diversified the samples, the greater errors were observed. 

Most researchers analysed projects related with construction of buildings, so there are 

only a few works devoted to civil engineering projects. Kaka and Price (2001) analysed 

140 UK road projects and found that the form of contract (fixed price vs. adjusted price) 

affects strongly the Bromilow’s time-cost model parameters. Yousef and Baccarini (2001) 

conducted similar work on the basis of 46 sewerage projects in Australia, but did not 

considered factors other than costs. Irfan et al. (2011), disposing of large samples, focused 
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on highway projects and created separate regression models for different project types 

(maintenance, resurfacing, construction, bridge construction, traffic infrastructure) that 

used planned cost and contract type as predictors of duration. 

Table 1. Overview of multifactor models (selected works),  

L – construction duration, bi – constants 

Autor, sample Factors found significant  Regression function, quality measures 

Walker, 1995 

33 non-residential 

buildings, new-built 

 cost (C) 

 ratio of time extension (x1) 

 scope (fit-out/other) ( x2) 

 level of quality requirements (x3) 

 management style (x4) 

 design and construction teams 

communication quality (x5) 

 efficiency of IT use (x6) 

662211 ...loglog xbxbxbCL   

determination coefficient R
2
=0.9987 

and percentage errors of estimate (for 

particular observations, not 

summarised) 

Chan and 

Kumaraswamy, 

1999, 

56 blocks of flats of 

the same 

standardised design 

system, the same 

public client,  

different set of factors describe as-planned 

and actual duration; for actual duration L: 

 cost (C) 

 project type (flats for sale / rent) (x1) 

 facade type (prefab or other) (x2) 

 volume of the building (x3) 

 gross floor area (x4) 

 number of storeys (x5) 

5

4
4

332110 lnln

x

x
b

xbxxCbbL





 

percentage errors of the estimate of L 

for each observation, maximum errors 

of  +/-7%, the model’s MAPE=2,51% 

Skitmore i Ng, 2003 

Australia, 

93 buildings, new 

 contractual time (CT) 

 contract type (lump sum / other) (x1) 

 procurement method (x2) 

cost excluded from the analysis 

3210 loglog xxCLbbL   

Adjusted determination coefficient 

R
2
=0.938 

Love et al., 2005 

Australia. 

126 buildings, new 

or refurbished 

 usable floor area (x1) 

 number of storeys (x2) 

cost excluded from the analysis, as cost 

not known until the project is finished 

22110 logloglog xbxbbL   

Adjusted R
2
=0.96 

MAPE=50% 

Stoy et al. ,2007, 

Germany, 

200 buildings from 

BKI database, 16 

buildings for 

verification 

 gross floor area (x1) 

 number of winters (x2) 

 project planning time in months (x3) 

dependent variable is logarithm of 

construction speed,  

cost excluded 

3322110
1 lnlnln xbxbxbb

L

x
  

Adjusted  R
2
=0.915, MAPE=20%, 

Errors of estimate for test sample 

projects range (-29%;9%) 

Hoffman et al., 2007, 

USA, 

616 military 

buildings, new or 

refurbished 

 cost (C) 

 client type (x2-x4) 

 management (own / contr. out) (x5) 

 design type (own / contr. out) (x6) 

665544

332210 lnln

xbxbxb

xbxbCbbL




 

Adjusted R
2
=0.374 

BCIS, 2004a 

UK, 

1500 new buildings, 

from KPI database 

 cost (C) 

 procurement system (x3) 

 contractor selection (x4) 

 client type (x5) 

 function (x6) 

 region (x7) 

77665544

33

2

210 loglog

xbxbxbxb

xbCbCbbL





 

BCIS, 2009, 

UK, 

4500 buildings, new 

or refurbished, BCIS 

database 

factors as above 

Separate regression functions for new-

builts and refurbishments  

Winter period does not affect duration 

significantly 

equation as above 

the “calculator” provides prediction 

and confidence intervals for the 

estimates; separate equations for new-

built and refurbishment projects 
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Discussion on the literature review 

Most authors claim that it is possible to apply regression models to estimating construction 

time on the basis of cost, so they assume that it is easier to estimate construction cost than 

time, and that cost estimates are accurate enough to provide a basis for time estimates. 

There is an abundance of evidence on discrepancies between early budgets and costs at 

completion. Case studies focus on most striking examples (Potts, 2005; Polonski, 2006; 

Magnussen and Olsson, 2006), but there are statistical overviews of the scale and 

frequency of cost miscalculations: quite alarming by Flyvbjerg et al (2002), and a number 

of less pessimistic (Ng et al. 2001; KPI UK, 2003; BCIS, 2004b; KPI New Zealand, 2005).  

Another issue is the reliability of the winning-bid price as a measure of the project 

scope and scale. There is evidence that contractors’ bids are sensitive to intensity of 

competition, subjective risk perception and even season of the year when a call for tenders 

is announced. This can be observed in bid spreads in public procurement procedures. In 

Poland, they are expressed by an average bid dispersion factor Wz (Borowicz, 2005): 

 



n

i i

i

z
C

C

n
W

1 min

max1
, (3) 

where n is the number of tender procedures investigated, and Cimax , Cimin are, respectively, 

the highest and the lowest bid in each procedure. For instance, for the years 2000-2007, the 

average bid dispersion factors of public projects in Poland were from 1.23 to 1.43, and bid 

dispersion in particular cases reached even 250% (Borowicz, 2005 and 2008). Thus, the 

relationship between the contract price and actual value of works may be rather loose. 

Under these circumstances, there are reasons to question both the “as-planned” and 

“contractual” cost in the role of independent variable for planning construction time. 

Moreover, it occurs that predictability of cost is generally no better than predictability of 

time (Martin et al., 2006; KPI UK, 2003). This provides more arguments against using cost 

as a predictor of time. However, before it is rejected, it would be interesting to check the 

model’s sensitivity to cost miscalculation. In general, values of the constant B in the 

models presented in the literature range from 0.2 to 0.5, and the smaller B, the smaller the 

effect of cost on the value of the time estimate (see formula 1). The time-cost models are 

thus not very sensitive to cost estimate errors. 

Investigation of time-cost relationship of Polish road projects 

Research methodology 

The aim of research was to create a model of road project construction duration based on 

relationships among the project qualities. These relationships were to be determined while 

analysing project qualities that were likely to be known or estimated at early planning stage, 

without considering details on organisation of works or construction methods. The model 

was (potentially) to find application in assuming construction durations at the stage of 

feasibility checks. For the purpose of this study, a project was defined as a scope of works 

contracted in one public procurement procedure and covered by one contract, 

supplemented with change orders and contract annexes, if applicable. 

Stages of research were following: literature review, interviews with the construction 

clients – to determine their approach to estimating construction durations and budgets at 

the planning stage (outside the scope of this paper), data collection (by analysing project 

records – no ready-made databases were available), preselection of project qualities 

correlated with duration by means of the regression tree, construction of a multifactor 

regression model, and finally comparing the models obtained underway: 
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1. a simple regression (least squares method) between functions of actual duration (L) and 

actual cost (C): )()( 10 CfbbLf  , where b0 and b1 are model parameters,  

2. a CART regression tree based on 25 project qualities recorded at data collection stage 

and likely to be known at early stage of project planning; 

3. multiple linear regression model (least squares method) relating a function of actual 

duration (L) and functions of predictors selected from the same project qualities as 

used to construct Model 2, )(...)()()( 22110 nn xfbxfbxfbbLf  , where b0 – bn 

are model parameters, and x1 – xn are predictors. 

Calculations were conducted by means of Statistica 8.0. 

The sample 

The sample comprised 100 public road projects, completed between 2003 and 2008 in 

three neighbouring regions in south-eastern Poland. The projects considered differed in 

scope and type (Figure 1), and their cost (“as planned”, including VAT) ranged from PLN 

800 thousand to PLN 500 Million. The sample was considered representative of road 

projects from the analyzed period and location, and its size was at least 15% of the size of 

the population (imprecise due to non-uniform reporting methods used by the public clients). 

One of the early assumptions of the research was analyzing similar projects, as new-

build circular roads. As occurred during the data collection process, the number of such 

projects was too small to be used for statistical analyses, and the majority of works 

contracted in the analyzed period consisted in modernization of the existing infrastructure. 

 

  

Figure 1. Sample structure according to object of works and project type 

Therefore, projects varying in scope and type were included in the sample. Their 

similarity lay in overall conditions: the clients were from public sector, acting under 

similar budgetary constraints, the regions were similar in terms of natural and economic 

environment and level of infrastructure development, the works were contracted according 

to the public procurement law, the only criterion of contractor selection was the lowest 

price, and contract duration was enforced by the client. A diversified sample implies that 

the model derived from the data would be a far going generalization. 

Simple linear regression model 

Analysis of scatter diagrams (Figure 2) and experiments with several functions confirmed 

that, among simple regression models considered, Bromilow’s model (Formula 2) provides 

best fit for the analysed sample, and is statistically correct. The model (Formula 7) is 

significant (F-test) and of significant parameters (t-tests), residuals are normally distributed, 

with constant variance and expected value of 0. Normality was checked by analysing 

residual histograms, scatter diagrams, and by normality tests: Kolmogorov-

Smirnov/Lilliefors’ and Shapiro-Wilk’s. Homoscedasticity of residuals was checked by 

analyzing residual scatter diagrams, and by Lagrange test (Stanisz 2007). The Bromilow’s 

model for the sample (Model 1) is described by the following equation: 
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 CL ln4649.02067.1ln   (4) 

the model’s adjusted determination coefficient 636,02 R , and standard error SEE=0.504. 

The mean absolute percentage error MAPE=44,84% is comparable with the scale of errors 

of time-cost models using logarithm transformation of duration, presented in the literature.  

 

 

Fig. 2. Scatter diagram of actual construction duration L against actual cost C, and scatter 

diagram of log-log values with regression line 

Regression tree 

While collecting input, data on 25 project qualities were collected. Those qualities were 

considered likely to be known at early stages of project planning, and were of various types: 

categorical and quantitative, related with geometric parameters of the road, scope of works, 

road class, location, number of bridges and many more, and are listed in Figure 4. All these 

potential predictors were used to construct CART models.  

The method consists in recursive division of the set of observations into subsets (two 

subsets at a time), according to one quality at a time, to obtain the greatest possible 

reduction of heterogenity of observations in the subset (Gatnar, 2001). Here, the 

heterogeneity was measured by the variance of durations of projects in the subset. The best 

tree was selected according to Breiman’s procedure (Gatnar, 2001).  

The best-fit model (Model 2), presented in Figure 3, uses seven predictors: assumed 

number of winters during construction, construction cost, number of culverts along the 

route, client type (either national or regional road office), total length of civil engineering 

structures, number of intersections, number of parking/bus bays. If applied in practice, it 

would assign a project one of ten durations: 91, 161, 166, 291, 396, 487, 490, 573, and 810 

days. Some of them differ by only a few days. 

The model’s adjusted determination coefficient 924,02 R (Gatnar, 2001) indicates 

that the model is well fitted to the sample. Considering the relatively small number of 

observations used to create the model, and their being diverse, this is not automatically an 

advantage when it comes to using the model for predictions. 

There may be doubts about using the number of winters as a predictor of construction 

duration, as hard to estimate as the duration itself. However, interviews with the client’s 

representatives indicated that the clients decided to fit a project in a certain number of 

years at the beginning of the project planning process, which arises from budgetary 

constraints and long-term planning of public organisations. Therefore, the number of 

winters can be considered defined in advance. Selection of this variable was prompted also 

by other research (Stoy et al 2007; BCIS 2004a) – where it was to allow for seasonal 

changes in speed of works. 
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Figure 3. The best regression tree – Model 2 

Multiple linear regression model 

It was assumed that a linear multiple regression model would be looked for, and its 

parameters were to be determined by the least squares method. With only 100 cases in the 

sample, using stepwise regression to select most suitable of 25 potential predictors (or 

actually over 40, as categorical variables were converted into binary variables) was 

considered inefficient. However, while constructing regression trees, one can identify 

variables that are strongly correlated with the predicted variable. These are not necessarily 

present in the best regression tree (Gatnar, 2001). Figure 4 presents the relative importance 

of potential predictors, determined in the procedure of constructing regression trees. For 

further investigations, nine potential predictors were selected arbitrarily: six of the “most 

important” defined in CART analysis (Figure 4), and additionally those present in the best 

regression tree. These nine factors were then used for constructing regression models by 

means of stepwise regression (forward selection and backward elimination): 

 construction cost, 

 number of winters, 

 length of civil engineering structures in the scope of a project, 

 number of civil engineering structures, 

 total length of roads covered by the project, 

 number of culverts along the route, 

 number of bays, 

 number of intersections, 

 client type (either regional or national road agency) 
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Figure 4. Relative importance of variables defined while constructing regression trees 

Several models were tried, differing in transformations of variables. The best fitted was 

Model 3, with four predictors: cost (C), civil engineering structures length (Civil_s_length), 

number of winters (Winters), and number of civil engineering structures (Civil_s): 

 sCivilWinterslengthsCivilCL _28.044.4__ln56.0ln89.143.4  , (5) 

The model fulfils the assumptions of the least squares method, its adjusted 

determination coefficient is 867.02 R , mean absolute percentage error MAPE=13,17%, 

and standard error SEE=2.28. Considering parameters of Equation 8, one can observe that 

the estimate is very sensitive to the number of winters that can be hard to asses.  

Quality of the models 

The models use different transformation of predicted value (lnL in the case of simple 

regression, L for regression tree, and L for multifactor regression), so the statistics of 

adjusted determination coefficient 2R , standard error SEE, or mean absolute percentage 

error MAPE cannot be directly compared. As the models are meant to be used for 

predicting duration expressed in days (L), errors expressed in days were calculated (Li is 

the observed duration, and iL̂ – duration calculated on the basis of the model):  

 iLLe i

days

i
ˆ , (6) 

Analysing them, one can see the scale of dispersion between expected vs. observed – 

for the set of observations used to build the models. Values of these errors, and the mean 

absolute percentage error, MAPE
days

 (Figure 10):  

 



n

i i

days

idays

L

e

n
MAPE

1

100
. (7) 

are directly comparable, though not normally distributed. Figure 5 compares the scale of 

errors in days for all models considered. For practical applications, the best model would 

be the one of lowest dispersion. In this case, it is the regression tree. Its MAPE
days

 is 23%. 

Model 1 has MAPE
days

 of 45%, and Model 3 – 28%.  

 

 

Figure 5. Comparison of model errors expressed in days 
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To compare the models’ predictive ability, duration estimates (in days) were calculated 

for seven projects not included in the initial sample. Their qualities stayed within the 

ranges covered by the models. Figure 6 shows predicted vs. observed values of project 

durations. Again, for practical applications, the best model would be the one of lowest 

error. The test sample is small, which affects reliability of the conclusions to follow.  

 

 

Figure 6. Predicted against observed durations (days) of test sample 

In the case of these particular projects, now it is Model 3 that seems to provide most 

precise predictions, as the observed values are quite close to predicted values. To express it 

in numbers, one can calculate mean absolute percentage errors in days for the test sample: 

the “best-looking” prediction model (Model 3) has days

testMAPE = 9%, the second-best is 

Model 1 (Bromilow’s) with days

testMAPE =21%. The regression tree (Model 2) provides the 

least accurate estimates with days

testMAPE =22%. This is due to the fact that it is too well 

adjusted to the initial sample, and the test sample simply does not follow the same pattern. 

The quality of predictions based on regression functions cannot be judged without 

prediction and confidence limits for the estimates of durations. However, in the case of 

non-parametric Model 2, there are no grounds to calculate prediction and confidence 

intervals in a way that could be compared with Models 1 and 3.  

Figure 7 presents these data for parametric models (expressed in months for better 

readability), assuming 95% confidence level.  

 

Figure 7. Comparison of confidence and prediction intervals at 95% confidence for 

Model 1 and Model 3, test sample projects, durations expressed in months 
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Model 1 seems too inaccurate to find any practical application. This may be illustrated 

by Case 3 from test sample: the user can be 95% sure that the expected duration for project 

of such cost is between 11 and 15 months (confidence interval for regression), but can be 

also 95% sure that a particular project of such cost may take between 5 and 36 months 

(prediction interval).  

The multiple regression Model 3 is certainly more accurate, but confidence and 

prediction intervals are still quite broad: for Case 3, the confidence limits for the regression 

are 11 and 14 months, and prediction limits – 7 and 19 months. 

Summary and conclusions 

The sample considered in the paper was small and diversified. However, some statistically 

significant relationships between construction duration and other project qualities have 

been found. 

Calculations confirmed the universal character of the Bromilow’s time-cost model. 

Certainly, the model has some advantages: it is simple and, at least for the considered 

sample, statistically correct. However, its errors are high (mean absolute percentage error 

in days is 45%) , and the prediction and confidence intervals impractically broad.  

Using a non-parametric method of regression trees, 25 qualities of the analysed project 

were checked with regard to their relationship with construction duration. Only four of 

them (the most important according to the non-parametric analysis) stayed in the final 

multifactor regression model: construction cost, number of winters within the construction 

period, total length of civil engineering structures (as bridges) in the project, and the 

number of these civil engineering structures. The predictors are different than these 

presented in the literature – this is of course specific to the type of projects analysed (the 

literature focuses mostly ob buildings, not roads) and initial assumptions on what factors to 

consider.  

What is interesting, the form of a multifactor regression equation most frequent in the 

literature, 

 jjii xbxbCbbL  lnlnln 10 ,  (8) 

where L is duration, C is cost, xi is a continuous variable, xj represents a discreet variable, 

and bi – parameters, did not provide the best fit for the analysed sample. The following 

equation proved more appropriate: 

 jjii xbxbCbbL  lnln10 . (9) 

It is statistically correct, immune to outliers, of lower errors and narrower predictions and 

confidence intervals, and also not very sensitive to errors of the predictors’ estimates, with 

the exception of the number of winters.  

 A non-parametric model of regression trees (CART type) also provides a good fit, 

though predictions less accurate, than the classic regression models. Interestingly, it uses a 

different set of predictors than the multifactor regression model: instead of number of civil 

engineering structures, there appeared: client type, number of culverts, number of 

intersections and number of bays. However, with the sample being small (100 used to 

construct the model and 7 to validate it) and diversified, such models are not reliable. 

Time-cost regression models for repeatable projects (e.g. buildings of the same 

function, structure type, similar layout and location) could be more precise. Similarly, if 

more independent variables were considered, and samples were larger, better models could 

be provided. A number of researchers report their achievement in this field (Irfan et al. 

2011) and there exists at least one commercial regression-based duration “calculator” 

(BCIS 2009). This may serve as evidence of practical applicability of parametric models in 

planning construction duration. Such models have some advantage over other models 
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based on experience, such as “black box” expert systems, or neural networks – they are 

portable: regression models are expressed as equations, and to use them, one does not need 

to dispose of the whole database or software. Moreover, the reasoning process behind the 

model is quite obvious. This may be the reason why, in the time of quick development of 

artificial intelligence methods, statistical analyses do not loose on popularity.  

Further research in the field may include: investigation on other factors, constructing 

other model types (here, specification of regression functions was based on results 

presented in the literature and scatter diagram analyses, and the simplest approach of least 

squares method was used), and applying artificial intelligence tools create better models. 

This however requires expanding the database.  
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