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Abstract 
Nowadays advanced machining processes are widely used by manufacturing industries in 
order to produce high quality precise and very complex products. These advanced 
machining processes involve large number of input parameters which may affect the cost 
and quality of the products. Selection of optimum machining parameters in such advanced 
machining processes is very important to satisfy all the conflicting objectives of the process. 
In this research work a newly developed advanced algorithm is applied for the process 
parameter optimization of selected advanced machining processes. This algorithm is 
inspired by the teaching-learning process and it works on the effect of influence of a teacher 
on the output of learners in a class. The detailed algorithm is explained in this paper. The 
important advanced machining processes identified for the process parameter optimization 
in this work are electrochemical machining (ECM) process and electrochemical discharge 
machining (ECDM) process. Two different multiobjective problems of these processes are 
considered in this work which was attempted previously by various researchers using recent 
optimization technique such as artificial bee colony algorithm (ABC). However, 
comparison between the results gives the superiority of the new algorithm in terms of 
population size, number of generations and computational time. 
 
Keywords: Advanced machining processes, Electrochemical machining process, 
Electrochemical discharge machining process, Multiple objective decision making, 
Teaching-learning-based optimization algorithm. 

 
Introduction 
With the industrial and technological growth, development of harder and difficult to 
machine materials, which find wide application in aerospace, nuclear engineering and other 
industries, has been witnessed in the past few decades. These materials possess high 
strength to weight ratio, hardness and heat resistance qualities. Advanced machining has 
grown out of the need to machine such materials. The advanced machining processes are 
also referred as non-traditional in the sense that they do not employ traditional tools for 
metal removal and instead they directly use other forms of energy. The problems of high 
complexity in shape, size and higher demand for product accuracy and surface finish can be 
solved through advanced machining processes. 

Advanced machining consists of various precision activities to be performed on very 
small work pieces having complex surfaces, especially in the electronic and computer 
industries. When those things are performed with conventional machining techniques, the 
problems one usually encounters are high tool wear rate and heat generation at the tool and 
work piece interface and subsequent alteration of work piece material characteristics, etc. A 
rigidity requirement for the tool is another problem in the conventional machining of small 
and deep holes, complex surface and shapes.  
 Stringent design requirements and difficult-to-machine materials such as tough super 
alloys, ceramics, and composites, have made conventional machining processes costly and 
obsolete. As a result, manufacturers and machine design engineers are turning to 
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advanced machining processes. These machining processes utilize electrical, chemical and 
optimal sources of energy to form and cut the materials. Large numbers of advanced 
machining processes are in existence today and few important among them are listed below: 

• Ultrasonic machining 
• Electro chemical machining 
• Electrical discharge machining 
• Laser beam machining 
• Electron-beam machining 
• Water-jet machining 
• Abrasive-jet machining 

Presently, advanced machining processes possess virtually large capabilities except 
for volumetric material removal rates, for which great advances have been made in the past 
few years to increase the material removal rates. As removal rate increases, the cost 
effectiveness of operations also increase, thereby providing economical use of advanced 
machining processes in the industries. 
 In the present work electrochemical machining process (ECM) and electrochemical 
discharge machining process (ECDM) is considered for its process parameters optimization 
using the new algorithm. The next section presents the detailed literature review on both the 
processes.  
 
Literature Review 
 
a) Electrochemical machining process 
Electrochemical machining (ECM) is an advanced machining process belonging to 
electrochemical category. In electrochemical machining, the removal of metal is controlled 
by the anodic dissolution in an electrolytic cell in which the work piece is the anode and the 
tool is cathode. The electrolyte is pumped through the gap between the tool and the work 
piece, while direct current is passed through the cell, to dissolve metal from the work piece. 
ECM is widely used in machining of jobs involving intricate shapes and to machine very 
hard or tough materials those are difficult or impossible to machine by conventional 
machining. It is now routinely used for the machining of aerospace components, critical 
deburring, fuel injection system components, etc. ECM is also most suitable for 
manufacturing various types of dies and moulds.  

The important input parameters of ECM process are feed rate, electrolyte flow rate, 
current, voltage, interelectrode gap, etc. which affects the process responses like metal 
removal rate, tool life, surface finish and production cost. In the past various researchers had 
attempted the process parameter optimization of ECM process. 

Bhattacharyya et al. (1973) proposed a two-dimensional interelectrode gap model in 
which maximization of the metal removal rate was considered as the objective function with 
the tool feed rate and electrolyte flow velocity as the design variables. The three constraints 
considered were temperature, passivity, and choking. However, the authors had considered 
only a single-objective optimization problem and solved the same using a graphical solution 
technique, which, in itself, was less accurate. This model was also based on many simplified 
assumptions, such as the constant void fraction, electrolyte conductivity as a function of the 
void fraction only, and constant electrolyte pressure along its flow path. 

Dardery (1982) proposed a cost model of the ECM process considering various costs 
involved in the process. The cost equation was arranged in terms of decision variables, 
namely feed rate, electrolyte flow rate, and voltage. The optimum values of the decision 
variables were obtained by partial differentiation of the cost equation with respect to the 
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decision variables. However, as no constraints were considered in this model, the values of 
decision variables obtained were not practical. 

Acharya et al. (1986) considered the multi-objective optimization model for the 
ECM process with maximization of the material removal rate, minimization of dimensional 
inaccuracy, and maximization of tool life as three conflicting objectives. The decision 
variables were the tool feed rate, electrolyte flow velocity, and applied voltage. The 
constraints used in this model were temperature constraint, passivity constraint, and choking 
constraint. The optimization problem was solved by goal programming. This model 
overcomes the limitations of the model proposed by Bhattacharyya et al. (1973). However, 
it did not include the variable bounds for feed rate and differences in the interelectrode gap. 

Hewidy et al. (2007) analysed the components of ECM cost (such as costs of power 
consumption, machining, electrolyte, and labour) with the objective to set out the basic 
principles for selecting a suitable electrochemical machine to meet the local production 
requirements of a company. The authors mentioned the impossibility of having a 
generalized model for this purpose. In another work, Hewidy et al. modelled the 
performance of ECM assisted by low-frequency vibrations using an analytical approach. 

Jain et al. (2007) formulated the optimization model based on the analysis given in 
Acharya et al. (1986) with certain modifications, i.e. expanding the variable bound ranges 
for the tool feed rate and electrolyte flow velocity. The optimization problem was then 
solved using a genetic algorithm. However, the authors had considered only a single 
objective optimization problem, i.e. to minimize the dimensional inaccuracy. Also the 
passivity constraint was violated in their approach. Furthermore, the genetic algorithm has 
its own limitations, such as the risk of replacement of a good parent string with the 
deteriorated child, less convergence speed, and difficulty in selecting the controlling 
parameters such as population size, crossover rate, and mutation rate. 

Asokan et al. (2008) used artificial neural network approach to determine the 
optimal machining parameters in ECM. Current, voltage, flow rate and interelectrode gap 
are considered as machining parameters and metal removal rate and surface roughness are 
considered as the objective functions. 

Rao et al. (2008) had applied particle swarm optimization technique to the 
optimization model of Acharya et al. (1986) and obtained very improved results. 
Multiobjective optimization problem was also effectively solved by using particle swarm 
optimization technique. Datta and Das (2010) used experimental dataset for modeling the 
ECM process parameters through regression analysis. Genetic algorithm was then applied to 
those developed linear model and an exponential model for maximizing material removal 
rate and minimizing surface roughness. Samanta and Chakraborty (2011) had used artificial 
bee colony (ABC) algorithm for the maximization of metal removal rate and minimization 
of overcut in the ECM process. 

It is observed from the review of past work that various traditional optimization 
techniques such as graphical method and mathematical programming techniques like goal 
programming, partial differentiation, etc., had been used to solve the problems of 
optimization of ECM process parameters. Subsequently it is proved that the results obtained 
by these traditional techniques are not the optimum and also these techniques are very 
complex in nature and cannot handle multiobjective problems effectively. To overcome the 
drawbacks of traditional optimization techniques, few researchers attempted the advanced 
optimization techniques like genetic algorithm, particle swarm optimization and artificial 
bee colony algorithm. However, to check for any improvement in the results, the teaching-
learning-based optimization algorithm is considered here for the parameter optimization of 
ECM process. A multiobjective problem is considered here and its details along with the 
result are given in example 1. 
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b) Electrochemical discharge machining process 
Electrochemical discharge machining (ECDM) is a hybrid advanced machining process 
which combines the features of electrochemical machining (ECM) and electro discharge 
machining (EDM). One of the major advantages of ECDM, over ECM or EDM, is that the 
combined metal removal mechanisms in ECDM, yields a much higher machining rate 
(Mediliyegedara et al. 2005). If a voltage is applied to an electrochemical cell beyond 
critical voltage, discharge initiates between one tool of the electrodes and the surrounding 
electrolyte, which is termed here as electrochemical discharge. When the applied voltage is 
increased beyond a threshold value, hydrogen gas bubbles evolve in large number at the tip 
of cathode and grow in size. Their nucleation site density increases, current path gets 
restricted between cathode and electrolyte interface causing discharge to occur at this 
interface instantly. Thus, discharge in ECDM always occurs when the voltage in an 
electrolytic cell is increased beyond a threshold value (Kulkarni et al. 2002). ECDM is a 
very recent technique in the field of advanced machining to machine electrically non 
conductive materials using electrochemical discharge phenomenon (Basak and Ghosh 
1997). Various input parameters involved in the ECDM process are electrolyte, 
temperature, applied voltage, inductance, current, pulse density, discharge frequency, etc. In 
the literature, few works were reported on the electrochemical discharge machining. 

Basak and Ghosh (1997) had developed theoretical model for material removal rate 
and then estimated the nature of MRR characteristics under different input conditions. The 
experimental result indicates that, the MRR can be substantially increased by introducing an 
additional inductance in the circuit. Kulkarni et al. (2002) proposed the basic mechanism of 
temperature rise and material removal through experimental observations of time-varying 
current in the circuit.  

Wuthrich and Fascio (2005) had reviewed the machining of non-conducting 
materials like glass or ceramics using electrochemical discharge machining with more focus 
on experimental difficulties. Mediliyegedara et al. (2005) presented the new developments 
in process control for the hybrid ECDM process and carried out a system identification 
experiment to obtain the dynamics of the system and a process control algorithm was 
implemented in the software form. 

Sarkar et al. (2006) described the development of a second order, non-linear 
mathematical model for establishing the relationship among machining parameters during 
an ECDM operation. Various parameters considered were applied voltage, electrolyte 
concentration and inter-electrode gap, etc. and the responses includes material removal rate, 
radial overcut and thickness of heat affected zone. The model was developed based on 
response surface methodology and finally the output of the work recommended that applied 
voltage has more significant effects on all the responses as compared to other machining 
parameters. Samanta and Chakraborty (2011) used the advanced optimization technique for 
the parameter optimization for ECDM process. Artificial bee colony algorithm was used to 
maximize material removal rate and minimization of heat affected zone and operating cost.  

It is clearly observed from the literature that very little work was carried out on the 
parameter optimization of ECDM process. Even though in few cases, the ECDM process 
was involved, but the work was restricted up to the experimental remarks in many cases. 
Hence in the present work, efforts are carried out for the parameter optimization of ECDM 
process.  
 
Teaching-learning-based optimization algorithm 
Teaching-learning-based optimization algorithm (TLBO) is a teaching-learning process 
inspired algorithm proposed by Rao et al. (2011a, 2011b), which is based on the effect of 
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influence of a teacher on the output of learners in a class. The algorithm mimics the 
teaching-learning ability of teacher and learners in a class room. Teacher and learners are 
the two vital components of the algorithm and describes two basic modes of the learning, 
through teacher (known as teacher phase) and interacting with the other learners (known as 
learner phase). The output in TLBO algorithm is considered in terms of results or grades of 
the learners which depend on the quality of teacher. So, teacher is usually considered as a 
highly learned person who trains learners so that they can have better results in terms of 
their marks or grades. Moreover, learners also learn from the interaction among themselves 
which also helps in improving their results. 

TLBO is population based method. In this optimization algorithm a group of learners is 
considered as population and different design variables are considered as different subjects 
offered to the learners and learners’ result is analogous to the ‘fitness’ value of the 
optimization problem. In the entire population the best solution is considered as the teacher. 
The working of TLBO is divided into two parts, ‘Teacher phase’ and ‘Learner phase’. 
Working of both the phase is explained below. 

 
i)  Teacher phase 

It is first part of the algorithm where learners learn through the teacher. During this 
phase a teacher tries to increase the mean result of the class room from any value M1 to his 
or her level (i.e. TA). But practically it is not possible and a teacher can move the mean of 
the class room M1 to any other value M2 which is better than M1 depending on his or her 
capability. Considered Mj be the mean and Ti be the teacher at any iteration i. Now Ti will 
try to improve existing mean Mj towards it so the new mean will be Ti designated as Mnew 
and the difference between the existing mean and new mean is given by (Rao et al., 2011). 

 _ i i new F jDifference Mean r M T M 
                   (1) 

Where TF is the teaching factor which decides the value of mean to be changed, and ri 
is the random number in the range [0, 1]. Value of TF can be either 1 or 2 which is a 
heuristic step and it is decided randomly with equal probability as:  

 1 (0,1){2FT round rand  1}
                      (2) 

The teaching factor is generated randomly during the algorithm in the range of 1-2, in 
which 1 corresponds to no increase in the knowledge level and 2 corresponds to complete 
transfer of knowledge. The in between values indicates amount of transfer level of 
knowledge. The transfer level of knowledge can be any depending on the learners 
capabilities. In the present work, attempt was carried out by considering the values in 
between 1-2, but any improvement in the results was not observed. Hence to simplify the 
algorithm the teaching factor is suggested to take either 1 or 2 depending on the rounding up 
criteria. However, one can take any value of TF in between 1-2.    

Based on this Difference_Mean, the existing solution is updated according to the 
following expression 

, , _new i old i iX X Difference Mean 
                        (3) 

 
b) Learner phase 

It is second part of the algorithm where learners increase their knowledge by interaction 
among themselves. A learner interacts randomly with other learners for enhancing his or her 
knowledge. A learner learns new things if the other learner has more knowledge than him or 
her. Mathematically the learning phenomenon of this phase is expressed below. 

At any iteration i, considering two different learners Xi and Xj where i ≠ j  
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 , ,new i old i i i jX X r X X  
     If  f (Xi) < f (Xj)                       (4) 

 , ,new i old i i j iX X r X X  
     If  f (Xj) < f (Xi)                       (5) 

Accept Xnew if it gives better function value. The implementation steps of the TLBO are 
summarized below: 
Step 1: Initialize the population (i.e. learners’) and design variables of the optimization 

problem (i.e number of subjects offered to the learner) with random generation and 
evaluate them.  

Step 2: Select the best learner of each subject as a teacher for that subject and calculate 
mean result of learners in each subject.  

Step 3: Evaluate the difference between current mean result and best mean result according 
to equation (1) by utilizing the teaching factor (TF). 

Step 4: Update the learners’ knowledge with the help of teacher’s knowledge according to 
equation (3). 

Step 5: Update the learners’ knowledge by utilizing the knowledge of some other learner 
according to Eqs. (4) and (5). 

Step 6: Repeat the procedure from step 2 to 5 till the termination criterion is met. 
 
The next section presents the applications of the proposed algorithm for the parameter 

optimization of ECM and ECDM process. 
 
Application Examples 
It is observed from the literature that very few advanced optimization algorithms such as 
genetic algorithm, particle swarm optimization and artificial bee colony algorithm had been 
applied for the parameter optimization of ECM and ECDM process. However, to check 
whether any further improvement is possible, the proposed TLBO algorithm is now 
attempted for the following multiobjective problems of ECM and ECDM process each. 
Example 1 describes the details of the model for ECM process along with the result and 
discussions, whereas Example 2 is for ECDM process.  
 
Example 1 
The ECM process model presented by Samanta and Chakraborty (2011) has been used in 
this example. In this work, the ECM process was modeled as maximization of material 
removal rate (MRR) and minimization of radial overcut (ROC). Four input parameters were 
involved in this multiobjective problem viz. electrolyte concentration (g/l), electrolyte flow 
rate (l/min), applied voltage (V) and inter-electrode gap (mm). The RSM based 
mathematical models for MRR and ROC as given by Samanta and Chakraborty (2011) are 
given in equations (6)-(7) respectively. 
 
ZMRR, (g/min) = 1.19263 + 0.05688x1 – 0.13590x2 + 0.09215x3 – 5.45671x4 – 0.00004x1

2 
+ 0.01232x2

2 + 0:00029x3
2 – 0.36444x4

2 – 0.00365x1x2 – 0.00067x1x3 + 
0.01407x1x4 – 0.01045x2x3 + 0:26505x2x4 + 0.09247x3x4                      
(6) 

 
ZROC (mm) = - 2.10705 + 0.01065x1 + 0.31849x2 + 0:00266x3 + 0.48742x4 – 0.00002x1

2 – 
0.01223x2

2 + 0.00011x3
2 + 0.08501x4

2 – 0.00040x1x2 – 0.00006x1x3 – 
0.00199x1x4 + 0.00044x2x3 – 0.02656x2x4 – 0.00781x3x4               
(7) 
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 Where, x1 is the electrolyte concentration, x2 is the electrolyte flow rate, x3 is the 
applied voltage and x4 is the inter-electrode gap. The bounds for these parameters are given 
as: 
Electrolyte concentration (g/l) = 15 – 75 
Electrolyte flow rate (l/min) = 10 – 14 
Applied voltage (V) = 10 – 30 
Inter-electrode gap (mm) = 0.4 – 1.2 
 
 Bhattacharya and Sorkhel (1999) investigated the electrochemical machining through 
response surface methodology-based approach. Samanta and Chakraborty (2011) had 
applied artificial bee colony algorithm to the models developed by Bhattacharya and 
Sorkhel (1999) for obtaining the optimized parameters of this example of ECM process. 
The maximum MRR obtained by Samanta and Chakraborty (2011) was 1.4551 (g/min) and 
the minimum ROC was 0.0824 mm. For this purpose, Samanta and Chakraborty (2011) had 
used a large population size of 2000 and had taken 100 iterations to obtain the optimum 
results. 
 However, the same mathematical models given by equations (6) and (7) are now 
attempted by the TLBO algorithm to check for improvement in the result. Initially both the 
models are attempted individually as a single objective function. The population size is used 
randomly starting with the low value and a promising result is shown by a population size 
of 10. The TLBO algorithm has given a maximum MRR of 1.4551 (g/min) and minimum 
ROC of 0.0818 mm. The optimized parameters obtained for this result is given in Table 1 
along with its comparison with the other results.  

 
Table 1. Single objective optimization results for ECM process. 

Results of 
Bhattacharya and 
Sorkhel (1999) ABC algorithm TLBO algorithm 

Process parameters 

MRR Overcut MRR Overcut MRR Overcut
Electrolyte conc. (g/l) 57.88 17.55 75 15 75 15 
Electrolyte flow rate (l/min) 11.98 11.05 10 10 10 10 
Applied voltage (V) 22.04 21.65 30 10 30 10 
Inter-electrode gap (mm) 1 0.87 1.2 0.4 1.2 0.4 
Optimal value 0.7245 0.2702 1.4551 0.0824 1.4551 0.0824 
 
 Even though the results of TLBO algorithm are similar to that of the ABC algorithm, 
but the TLBO algorithm has used a very low population size of 10 as compared to that of 
2000 in case of ABC algorithm. Similarly, the TLBO algorithm need only 20 iterations for 
consistency and has converged the optimum result in fifth iteration only. Whereas, ABC 
algorithm had taken 100 iterations in both the models. Thus, TLBO algorithm has proved its 
superiority in terms of faster convergence rate. 
 Samanta and Chakraborty (2011) had combined both the objectives and obtained a 
multi-objective optimization problem, as given by equation (8). By combining all the 
objectives, common process parameters can be obtained which satisfies all the conflicting 
objectives (Rao 20101). 
 Min(Z1) = w1ZROC/ROCmin - w2ZMRR/MRRmax               
(8) 
 Where, ROCmin and MRRmax are the minimum and the maximum values of ROC and 
MRR respectively which can be obtained by attempting an individual objective function, 
and w1 and w2 are the weight values assigned to ROC and MRR, respectively. In the 
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present case, same weightage of 0.5 each is used as considered by Samanta and Chakraborty 
(2011) and the results obtained by artificial bee colony algorithm is given in Table 2. The 
objective function values reported by Samanta and Chakraborty (2011) were wrong. The 
same is rectified in this work and the corrected values are given in Table 2. 
 This multi objective optimization problem is now attempted by the TLBO algorithm 
and the result obtained by TLBO algorithm is given in Table 2 along with its comparison 
with earlier result. 

Table 2. Multi-objective optimization of the ECM process. 
Parameters and objective 
function 

ABC result TLBO result 

Electrolyte concentration (g/l) 15 15 
Electrolyte flow rate (l/min) 10 10 
Applied voltage (V) 10 10 
Inter-electrode gap (mm) 0.4 0.4 
Metal removal rate (g/min) 0.4408* 0.4408 
Radial overcut (mm) 0.0818* 0.0818 
Z1 0.3488* 0.3488 
Number of iterations 100 20 

 *Corrected values 
 
 The TLBO algorithm has given a compromising result for both the conflicting 
objectives by satisfying all the parameter bounds. TLBO algorithm has taken a very small 
population size of 20 for such a multiobjective problem compared to that of 2000 in case of 
ABC algorithm. The results are also converged very fast. 
 
Example 2 
This example is taken from the work of Sarkar et al. (2006) who had carried out parametric 
analysis on electro- chemical discharge machining of silicon nitride ceramics using steepest 
ascent method. Samanta and Chakraborty (2011) attempted the same problem using 
artificial bee colony algorithm. The example considered was a multiobjective problem 
which involves maximization of material removal rate (MRR) and minimization of radial 
overcut (ROC) and heat affected zone (HAZ). The input parameters involved in the model 
were applied voltage (V), electrolyte concentration (wt %) and inter-electrode gap (mm). 
The individual mathematical model for material removal rate, radial overcut and heat 
affected zone is given below by the equations (9) - (11) respectively. 
 
ZMRR, (mg/hr) = 4.96423 – 0.20418x1 + 0.09862x2 + 0.00851x3 + 0.00249x1

2 – 0.00086x2
2    

                          + 0.00039x3
2 – 0.00181x1x2 – 0.00104x1x3 + 0.00125x2x3                   (9) 

 
ZROC, (mm) = 3.15622 – 0.08019x1 - 0.07678x2 – 0.00356x3 + 0.00069x1

2 + 0.00048x2
2 +   

                       0.00016x3
2 + 0.00072x1x2 – 0. 00026x1x3 + 0.00041x2x3           (10) 

 
ZHAZ, (mm) = 0.940335 – 0.019541x1 – 0.028638x2 – 0.003122x3 + 0.000147x1

2 +  
                       0.000242x2

2 + 0.000017x3
2 + 0.000251x1x2 – 0.000017x1x3 + 0.000106x2x3 

                            (11) 
 Where x1 is the applied voltage (V), x2 is the electrolyte concentration (wt %) and x3 
is the inter-electrode gap. The bounds for these parameters are given as: 
Applied voltage (V) = 50 – 70 
Electrolyte concentration (wt %) = 10 – 30 
Inter-electrode gap (mm) = 20 – 40 
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 Samanta and Chakraborty (2011) showed the maximum MRR of 1.62603 mg/h using 
100 generations. Similarly the minimum ROC and HAZ obtained by Samanta and 
Chakraborty (2011) was 0.05912 mm and 0.05409 respectively. However, it is observed 
that the obtained MRR of 1.62603 mg/h is wrong and the corrected MRR should be 1.3372 
mg/h. Now to check for the improvement in result, the proposed TLBO algorithm is applied 
to the mathematical models of MRR, ROC and HAZ as given by the equations (9) – (11) 
respectively. 

The settings for population size and iterations are done initially by trial runs and 
finally the consistent results are obtained by using population size of 10 and 20 iterations 
are sufficient to get optimum and consistent result. Samanta and Chakraborty (2011) used a 
population size of 2000 and the number of iterations was 100 in the case of artificial bee 
colony algorithms; whereas a population size of 10 and 20 numbers of iterations are 
sufficient for TLBO algorithm to give the consistent result in this case. Table 3 gives the 
result obtained by TLBO algorithm and its comparison with the previous results.  
 

Table 3.  Comparative results for single objective optimization of ECDM process. 
Steepest ascent method ABC algorithm TLBO algorithm Process 

parameters MRR ROC HAZ MRR ROC HAZ MRR ROC HAZ 
Voltage (V) 70 50 50 70 50 50 70 50 50 
Electrolyte 
conc (wt%) 

18 24 22 20 30 24.5 10 30 25 

IEG (mm) 27 30 39 20 20 40 21 20 38 
Optimal 
value 

1.24453 0.11138 0.055874 1.3372* 0.05912 0.05409 1.5902 0.0591 0.0541 

* Corrected result. 

 
 TLBO algorithm has increased the MRR from 1.3372 mg/h to 1.5902 mg/h thereby 
giving improvement over 18 %. Convergence curve given by Samanta and Chakraborty 
(2011) shows that number of iterations used was 100 and maximum MRR was converged 
after 30 iterations. However, TLBO algorithm has converged the maximum MRR in fifth 
iteration. In case of minimization of ROC and HAZ, any improvement in the result is not 
observed, but in this case also, TLBO algorithm has converged faster result and needs 
population size of 10 and 20 iterations, whereas algorithm used by Samanta and 
Chakraborty (2011) had taken population size of 2000 and 100 iterations. Thus TLBO 
algorithm has proved its effectiveness in terms of faster convergence rate as compared to 
other advanced algorithm. Samanta and Chakraborty (2011) had also attempted the 
multiobjective problem by considering all the three models simultaneously. The 
multiobjective model used by Samanta and Chakraborty (2011) is given by equation (12). 
 Min(Z2) = w1ZROC/ROCmin + w2ZHAZ/HAZmin - w3ZMRR/MRRmax           (12) 
 Where, ZMRR, ZROC and ZHAZ are the RSM-based equations, as given in equations 
(9)–(11), respectively. ROCmin, HAZmin and MRRmax are the minimum, minimum and 
maximum values of ROC, HAZ and MRR, respectively when these are attempted 
individually. w1, w2 and w3 are the weights assigned to ROC, HAZ and MRR, respectively. 
In this case, same weightages of equal priority is considered as used by Samanta and 
Chakraborty (2011) i.e. w1=w2=w3 =1/3.  
 For this multiobjective model, Samanta and Chakraborty (2011) had given the 
maximum MRR of 1.4860 mg/h, minimum ROC of 0.0591 mm and minimum HAZ of 
0.0569 mm. The optimized parameters obtained for this are given in Table 4. The proposed 
TLBO algorithm is now applied to this multiobjective model with a population size of 50 
and the results are checked for 50 iterations. The results obtained for this combined 
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objective function using TLBO algorithm are given in Table 4 along with its comparison 
with the artificial bee colony algorithm. 
 

Table 4. Multi-objective optimization of the ECDM process. 
Parameters and objective 
function 

ABC result TLBO result 

Applied voltage (V) 50 50 
Electrolyte concentration (wt %) 30 30 
Inter-electrode gap (mm) 20 20 
Metal removal rate (mg/h) 0.4860* 0.4860 
Radial overcut (mm) 0.0591 0.0596 
HAZ thickness (mm) 0.0569 0.0569 
Z2 0.5843 0.5733 
Number of iterations 100 20 

 * Corrected value 
The combined objective function always gives compromising result by satisfying all 

the objectives. In the present case also, the optimized parameters setting obtained by using 
the TLBO algorithm has given the compromising solution for the combined objective 
function, as compared to the individual function solution. In this example, the results 
obtained by the TLBO algorithm have proved its capability over the artificial bee colony 
algorithm in terms of handling the multiobjective problem.  
 
Conclusions 
In this work two advanced machining processes, ECM and ECDM, are considered for the 
process parameters optimization using a new algorithm. Two examples are considered, one 
for each process, having multiobjective models. The same models were earlier attempted by 
other researchers using ABC algorithm. The newly developed TLBO algorithm is 
successfully applied to both these examples. In some cases, the TLBO algorithm has given 
the similar results to that of ABC algorithm, but in all those cases, TLBO algorithm uses 
very small population size and less number of iterations to converge to the optimum result. 
In few cases TLBO has proved its superiority over ABC algorithm and has given 
improvement over ABC algorithm. Thus the TLBO algorithm is proved superior over the 
other advanced optimization algorithm. In the similar way, the TLBO can be effectively 
applied to other advance machining processes. 
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